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Question 1: What is ICGEM?

Answer: The International Centre for Global Earth Models (ICGEM) was established in
2003 as a new service under the umbrella of the new International Gravity Field Service
(IGFS). It has been an active web based service since 2003 and includes:

• collecting and long-term archiving of existing global gravity field models and solutions
from dedicated time periods (e.g., monthly GRACE models)

• making global gravity field models available on the web in a standardized format
(self-explanatory)

• the possibility to provide Digital Object Identifiers (DOI) to the models (i.e., to the
dataset of coefficients)

• an interactive visualization tool of the static and monthly global models (geoid
undulations and gravity anomalies)

• a web-interface to calculate gravity functionals from the spherical harmonic models
on freely selectable grids (Gaussian filter in spatial domain included)

• a web-interface to calculate and plot the time variation of the gravity field at freely
selectable positions or over defined basins → the G3-Browser (GFZ Grace Gravity
Browser)

• the theory and formulas of the calculation service in Scientific Technical Report
STR09/02 (downloadable)

• the comparison of the models in the spectral domain

• the comparison of the models with GNSS/levelling derived geoid values

• the visualization of surface spherical harmonics as tutorial

• the ICGEM web-based discussion forum

Question 2: What is the Earth gravitational field? What is the gravitational
potential?

Short Answer: Gravitation is the attractive force between masses. The gravitational
field of the Earth is a vector field and describes how the Earth attracts (magnitude and
direction) other masses depending on their position relative to the Earth. The gravitational
potential is a scalar field from which the attraction can easily be computed.

Long Answer: According to Newton’s law of gravitation, the magnitude F of a force
between two masses m1 and m2 (which are assumed to be point shaped to make the
formulation simple) depends on the two masses and the distance l between them:

F = G
m1m2

l2
, (1)

where G is the gravitational constant.
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This attractive force is proportional to the masses and inversely proportional to the square
of the distance between the masses. Therefore, the attractive force becomes bigger when
the masses are bigger and it becomes smaller when the distance between the masses is
larger, where l2 in the denominator means that the force quadruplicates if the distance is
divided in halfes.

The direction of the force is along the distance l connecting the point masses. Hence the
force is a vector:

~F = G
m1m2

l2
·
~l

l
. (2)

If we call m1 the attracting, and m2 the attracted mass, the direction of the vector ~l (and
thus ~F ) points from m2 to m1.

Imagine the mass distribution of the Earth as a sum of many (say n) point masses
m1,m2, ...,mn, positioned at locations q1, q2, ..., qn. Then, the resulting force of all these
masses acting on a mass mp, located at position p, is:

~F (p) = Gmp ·
(

m1

l2(p, q1)
·
~l(p, q1)

l(p, q1)
+

m2

l2(p, q2)
·
~l(p, q2)

l(p, q2)
+ ...+

mn

l2(p, qn)
·
~l(p, qn)

l(p, qn)

)
, (3)

which can be written as:

~F (p) = Gmp ·
n∑

i=1

mi

l2(p, qi)
·
~l(p, qi)

l(p, qi)
. (4)

The direction of the vector ~l(p, qi) is from point p to point qi. If we assume that the
magnitude of the mass mp is 1 (the so-called “unit mass”), we see that the masses
m1, ...,mn generate at point p the attractive acceleration vector ~ga(p) (a is for attractive),
which is called gravitation:

~ga(p) = G
n∑

i=1

mi

l2(p, qi)
·
~l(p, qi)

l(p, qi)
. (5)

Because point p could be any point in space, ~ga is the vector field of gravitational attraction
produced by the masses m1, ...,mn. This is what we call the gravitational field . If we
imagine that the number of these masses increase infinitely and the masses themselves
becomes infinitely small, then it is called mass density distribution and mathematically, the
sum in equation (5) will change into an integral over the volume of the density distribution:

~ga(p) = G

∫
v

ρ(q)

l2(p, q)
·
~l(p, q)

l(p, q)
dv(q), (6)

where ρ(q) is the mass density distribution, v is the volume containing the mass distribu-
tion, and ρ(q) dv(q) is the infinitesimal mass element at point q.

It is possible to define a scalar field V (p) in such a way that the vector field ~ga(p) can be
derived from V by its gradient:

~ga(p) = grad V (p). (7)
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In Cartesian coordinates the gradient of a 3-dimensional scalar function V (x, y, z) is:

~ga(p) = gradV (p) =

(
∂V (p)

∂x
,
∂V (p)

∂y
,
∂V (p)

∂z

)
, (8)

where the position p also consists of 3 components px, py, and pz.

This scalar field V (equation 7) is called the gravitational potential . If we know the
gravitational potential, then we also know the gravitation. Because it is easier to handle
the scalar field V than the (3-dim.) vector field ~ga, generally the potential is used to
describe the attraction of a body (See also question 28 and Heiskanen and Moritz [1967],
or Hofmann-Wellenhof and Moritz [2006]).

Question 3: What is a gravity field model of the Earth? What is the differ-
ence between the gravity field and gravitational field?

Short Answer: The terms gravity field and gravitational field are commonly mixed or
used interchangeably. However, in geodesy, there is a difference between the two which is
due to centrifugal potential.

Long Answer: The differences between the gravity field and gravitational field are given
as follows:
Gravitational field is formed by the summation of pure attractive forces of the masses
(of the Earth) (see question 2).

Gravity field is the sum of the Earth’s gravitational attraction and the centrifugal
force acting on the masses rotating together with the Earth (at the ground or in the
atmosphere). Hence, the gravity potential W is the sum of the gravitational potential Wa

and the centrifugal potential Φ:
W = Wa + Φ. (9)

The centrifugal potential

Φ =
1

2
ω2 d2, (10)

depends on the angular velocity of Earth’s rotation ω and the distance from the axis of
rotation d.

The sum of the gravitational acceleration (the gravitation) and the centrifugal acceleration
is called the gravity vector or just gravity ~g and it can be derived from the gravity
potential W by computing the gradient:

~g = gradW, (11)

(see also Heiskanen and Moritz [1967] and Hofmann-Wellenhof and Moritz [2006]).

A global model of the Earth’s gravity field is a mathematical function which approxi-
mates the real gravity potential and allows to compute the physical quantities related to
the gravity field, i.e., the gravity field functionals (see question 6) at each position in the
3-dimensional space. A gravity field model therefore should contain both, a model of
the gravitational potential and a model of the centrifugal potential. Because modelling
the centrifugal potential is well-known and can be done very accurately, the relevant and
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challenging part of a gravity field model is modelling the gravitational field. Therefore, the
term “gravity field model” is also very often used in the sense of “gravitational field model”.

Question 4: What is the normal gravity field or normal potential? What is a
reference ellipsoid?

Short Answer: The normal potential of the Earth should, on the one hand, approxi-
mate the real Earth’s gravity potential for practical purposes and, on the other hand, have
a mathematical representation which is easy to handle.
By defining such a normal potential, the real gravity potential can be split into two parts,
the normal potential U and the disturbing potential T :

W (x, y, z) = U(x, y, z) + T (x, y, z). (12)

For many purposes it is useful and sufficient to approximate the figure of the Earth by a
reference ellipsoid . It is defined as the ellipsoid of revolution which fits the geoid, i.e., the
undisturbed sea surface of the Earth, as good as possible (i.e., in the least squares fit sense).

The normal potential together with the geometrical reference ellipsoid is called
Geodetic Reference System (e.g., Mularie [2000] or Moritz [1980]).

Long Answer: The normal potential is defined as follows:

• Like the gravity potential W , the normal potential U also consists of a gravitational
potential Ua and the centrifugal potential Φ: U = Ua + Φ.

• One of the equipotential surfaces of the normal potential U(x, y, z) is the reference
ellipsoid. This means that this surface approximates the geoid which, in turn, is the
equipotential surface of the real potential W with the value W0. The value of the
normal potential on this surface is termed as U0.

• The strength or intensity of the normal potential U(x, y, z) is defined by postulating
U0 = W0 (which is equivalent to postulating that the mass generating the normal
potential is equal to the mass of the Earth).

Hence, the reference system is completely determined by 4 parameters:

- the angular velocity of the Earth (usually denoted by ω)
- the shape of the reference ellipsoid (e.g. its two semiaxes a and b, or one of the

semiaxes plus flattening f)
- the value U0 = W0 (or, which is equivalent, the value for GM , the gravitational

constant times the mass of the Earth)

It is advantageous to define ellipsoidal coordinates (h, λ, φ) with respect to this level
ellipsoid U(h = 0) = U0 = W0, where h is the height above ellipsoid (measured along
the ellipsoidal normal), λ is the ellipsoidal longitude and φ the ellipsoidal latitude. Thus
equation (12) can be re-written as:

W (h, λ, φ) = U(h, φ) + T (h, λ, φ). (13)

Note that the normal potential U does not depend on λ. The geoid in ellipsoidal coordinates
is the equipotential surface for which holds:

W (h = N(λ, φ), λ, φ) = W0, (14)
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where N(λ, φ) is the usual representation of the geoid as heights N with respect to the
ellipsoid as a function of the coordinates λ and φ. Thus N are the undulations of the
geoidal surface with respect to the ellipsoid.
Obviously, the disturbing potential

T (h, λ, φ) = Wa(h, λ, φ)− Ua(h, φ), (15)

does not contain the centrifugal potential and is harmonic outside the masses. The gradient
of the normal potential

~γ = grad U, (16)

is called normal gravity vector and the magnitude

γ = |grad U |, (17)

is the normal gravity (for more details see, e.g. Barthelmes [2013]).

Question 5: Why do we need gravity field models?

Answer: The determination of the Earth’s global gravity field is one of the main tasks of
physical geodesy. Global gravity field models provide information about the Earth, its
shape, its interior and fluid envelope. For instance, orthometric height and normal height
systems are the most widely used systems in the world. These heights can be determined
by traditional spirit leveling, a precise but inefficient method. With the contribution of
satellite positioning and an accurate geoid model, the orthometric or normal heights can be
determined at any point and at any time very efficiently (see also question 15). Obviously,
the definition of a global height reference system is only possible with an accurate global
gravity field model. If we speak about “heights above sea level”, we simply refer to the
geoid as a reference surface which is accessible at any point globally. The geoid, in turn, is
an equipotential surface of the gravity potential.

Also, time variations of global gravity field are essential in monitoring mass distributions
all over the globe. Monitoring sea level variations, ice melting, ground water, drought
severity in specific regions are only few of the common applications of time variable gravity
field models.

Another important use of global gravity field models is the calculation of artificial satel-
lites orbits. Considering hundreds of man-made satellites orbiting our Earth, without the
contribution of a good global gravity field model, the calculation of the orbits precisely
would not be possible.

Question 6: What are the gravity field functionals?

Answer: All physical quantities that can be derived from the gravity field are called here
gravity field functionals. For some of them, additionally, the knowledge of a reference
system is necessary. There are functionals which are 3-D functions in the space outside
the Earth, and there are functionals which are only dependent on latitude and longitude,
therefore they are 2D functions.
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3-D functionals of the gravity field in ellipsoidal coordinates are the gravity potential
W (h, λ, φ), gravity ~g(h, λ, φ), gravity disturbance δg(h, λ, φ), gravity anomaly based on
Molodensky’s theory ∆g(h, λ, φ), and generalized height anomaly ζg(h, λ, φ). 2D function-
als are, the geoid (which is commonly given as undulations with respect to a reference
ellipsoid) N = N(λ, φ) and the classical gravity anomaly ∆g(λ, φ) (see, e.g., Barthelmes
[2013]).

Question 7: What do you mean by model coefficients (spherical harmonic
coefficients)? How are they calculated?

Short Answer: There are different mathematical representations for gravitational field
models, e.g., ellipsoidal harmonics, spherical radial basis functions, and spherical har-
monic wavelets. In practice, almost exclusively, solid spherical harmonics are used to
represent the gravitational potential globally. Therefore, model coefficients are spherical
harmonic coefficients, which together with the spherical harmonic functions, approximate
the real gravitational potential of the Earth.

Long Answer: A function, say f(x), which is given by discrete measurements f(xj) = fj ,
and not continuously by a formula, is usually represented (or approximated), as a sum
over so called basis functions bi(x) that are multiplied by coefficients ci:

f(x) ≈ c1 b1(x) + c2 b2(x) + ...+ cN bN (x) =
N∑
i=1

ci bi(x). (18)

For this purpose, first, the basis functions, bi(x) have to be chosen properly. If f(x) is a
1-dimensional function the basis functions could be, e.g., polynomials bi(x) = xi. Second,
the coefficients ci, (i = 1, ..., N) have to be computed such that the sum in equation (18)
fits the measurements in a defined way. Usually, the more basis functions are used (i.e.,
the more coefficients are fitted), the better the approximation is. However, the number
of coefficients N which can be estimated, depends on the number of measurements. It is
important to say that not only direct measurements, fi of the function f(x) can be used
for this approximation, but also measurements Fj [f(x))] which depend on the function
somehow. This is the general situation in geodesy, since direct measurements are very
rare.

It is obvious that the choice of the basis functions depends on the type of the function
which has to be approximated. Important is that the set of basis functions is sufficient to
represent each function coming into question (which means, mathematically, the set of
basis functions must be complete), and, that each basis function is really necessary, i.e.,
a basis function cannot be represented as a linear combination of other basis functions
(which means, mathematically, the set of basis functions must be linearly independent).

Here, we want to approximate the global gravitational potential of the Earth, more
precisely, the potential outside the Earth. From physics and mathematics, i.e., from
potential theory, we know that this potential is not just an arbitrary 3-dimensional
function outside the Earth, but, (because it has to do with potential energy) it fulfills
some conditions. Particularly, it fulfills Laplace’s equation :

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (19)
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More detail can be found also in Heiskanen and Moritz [1967] and, e.g., in the Free
Encyclopedia WIKIPEDIA. Such functions are called harmonic functions. The most
natural basis functions in spherical coordinates in the space of functions harmonic outside
a sphere (that is how mathematicians call it) are solid spherical harmonics.

Question 8: How can I download model coefficients?

Answer: The link for a list of models is provided on the main page:
Models under “Table of Models” on the left. The user has an access to the model descrip-
tion as well as the coefficients on this list without any registration to the service. Model
can be downloaded via clicking on the gfc (gravity field coefficients) or zip corresponding
to the model listed under the Download column.

In more detail:

1. Click on the link “Table of Models” on the navigation tab of our ICGEM-homepage.
This opens a table with all global gravity field models.

2. Go to the line with the model of your interest and click on the blue link labelled
“gfc” in the column “download” with the left mouse button. This opens a new tab in
your browser displaying the model gfc-file as text. Please consider that downloading
models with high maximal degree can take some time, since they are quite large files.
Therefore, it is preferable to download them as compressed files using the blue “zip”
link.

3. As an alternative, you can right click on the “gfc” and select the option “Save link
content as...” to download the coefficient file and you can place it anywhere in your
PC.

Question 9: Does ICGEM compute the listed models?

Answer: No, ICGEM does not compute the models. There are 158 models listed under
the ICGEM Calculation Service at the moment. The list includes static gravity field models
(e.g., satellite-only, satellite and terrestrial data combined models) as well as models from
dedicated shorter time periods (e.g., monthly solutions) (see also question 11). ICGEM
accepts models from different institutes, universities, and research centres. Therefore,
models come from different sources. The computation, estimation, and determination of
the global models is not a task of ICGEM.

For further information about global models and their computation the reader is referred
to Barthelmes [2014] (available here) and question 7.

Question 10: Do you provide gravity measurements?

Answer: ICGEM is a service for global gravity field models and not for gravity measure-
ments. The service for gravity measurements is the Bureau Gravimétrique International.
The different services of the geodetic and geophysical community related to the gravity
field of the Earth are coordinated by the International Gravity Field Service - IGFS. Our
service ICGEM offers the possibility to compute different functionals (e.g., gravity, gravity
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anomalies, gravity disturbances, or geoid undulations) from one of the global models on a
grid of your choice (see the calculation service of ICGEM).

Question 11: What is the difference between the so-called “static” or “long-
term” global gravity field models and models from dedicated time periods?

Answer: In geodesy, global gravity field model of the Earth, which is also called Global
Geopotential Model is a mathematical function which describes the gravity field of the
Earth in the 3-dimensional space. Due to mass redistribution on and inside the Earth (e.g.,
seasonal variations), the gravity field changes with time. Although these temporary changes
are very small and/or very slow, they can be measured and modelled up to a certain degree.

A model, mean over a long time provides high resolution in spatial domain and no
resolution in time domain. On the contrary, a model, mean over a short time (e.g., 1
month) provides low resolution in spatial domain and good resolution in time domain.
There is a trade-off between the resolution in space and resolution in time. Hence, the
long-term averaged models represent the mean value of global measurements, and describe
static gravity field models. On the contrary, variations from dedicated time periods
represent the variations of the gravity field corresponding to a specific (e.g., monthly) time
period.

Question 12: What is the accuracy of a model?

Answer: In physical geodesy, a gravity field model is used to approximate the real gravity
field. If we could model the real gravity field perfectly, we would need infinitely many and
perfectly determined coefficients so that our model would be equal to the real gravity field.
However, in reality, this is not possible. We can determine a limited number of coefficients
and try to approximate the real field as accurately as possible. At this point, the accuracy
or error estimation of the model or model output needs to be investigated in terms of two
errors, namely omission and commission error.

Omission error: Our approximation of the real field is NOT represented by infinite
number of coefficients, but limited. The omission error occurs due to this limitation, in
other words due to the truncation of the spherical harmonic series expansion at some degree
(maximum degree). This process causes the terms above the maximum degree to be omit-
ted, thus causing an omission error [Jekeli , 1979]. The omitted components have shorter
wavelength than the resolution limit of the model and simply are not captured by the model.

Commission error: The other major error is due to the noise existing in the potential
coefficients themselves. Since the limited coefficients cannot be determined perfectly, every
single coefficient has an error component.

Moreover, determination of higher degree coefficients is subject to larger errors. The user
can refer to one of the coefficients file to look at the error estimations of each spherical
harmonic coefficients (columns 5 and 6) and notice that the estimated errors for higher
degree and order coefficients are larger than the estimated errors of lower degree coefficients.

It is worth noting that the accuracy is related to a certain wavelength interval and differs
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for different wavelength intervals. The commission error increases as the maximum degree,
`max, of the spherical harmonic expansion increases (shorter wavelength interval), whereas
the omission error decreases. Concerning the error estimation of a functional (e.g., geoid
undulation) computed for a specific point, both the omission error and commission error
of the model as well as their propagation to the functional should be considered.

Question 13: What is the accuracy of EGM2008 (or any other gravity field
model)?

Answer: Mathematically, resolution limit of a model (see also question 14) in spherical
harmonics depends on the highest degree and order of the model development. The
real resolution in a specific region depends on the density and the quality of the data,
that are included in the estimation of the model including the terrestrial measurements.
EGM2008 is a combined model; therefore, satellite and terrestrial datasets are used in the
development of the model. Accordingly, the error estimation of the model needs to be
computed for each separately and then combined.

Combined model accuracy assessment can be performed via different techniques (e.g.,
internally and externally). One of the commonly used methods for the geoid undulation
is to compare to external datasets, e.g., GNSS/leveling derived geoid undulations. How-
ever, the results provided by this technique are only as good as the GNSS/levelling data.
Regarding the error estimation of a specific model internally, the user is referred to the
authors of the model and the relevant web page (e.g., EGM2008).

Question 14: What is the resolution of a model?

Answer: Resolution of a model generally refers to the resolution in spatial domain.
The length (e.g., size, dimension) of the smallest bump or dale which can be resolved, i.e.,
which can be captured and represented by the model, refers to the resolution of the model
in spatial domain. In other words: how far away two very narrow bumps (in reality) must
be, to be captured by the model as two separate bumps and not as one smoothed bump,
is the limit of the resolution (see figure 5 in Barthelmes [2013]). In a spherical harmonic
model the resolution depends on the highest degree and order of the model and is very
often defined as “half of the shortest representable wavelength” (or: shortest representable
half-wavelength) that is captured by the model.

The maximum degree `max of the model expansion corresponds to the spatial resolution
at the Earth surface by:

ψmin =
πR

`max
≈ 20000 km

`max
, (20)

where ψmin is the resolution in km (shortest representable half-wavelength of gravity field
features) of a model with `max(`max + 1) parameters C`m and S`m, and R is the Earth’s
radius. A summary of different spherical harmonic degree expansions and corresponding
half-wavelengths are given in Table 1.
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Table 1: Spherical harmonic expansion degree and corresponding resolution in spatial
domain.

spherical half-wavelength
harmonic degree ` ψmin[km]

100 200.00

200 100.00

360 55.55

2190 9.13

This is the formal resolution which is mathematically possible using a model with maxi-
mum degree `max. The real resolution, of course, depends on the data that are used to
compute the model. Let us assume a combined model that consists of satellite measure-
ments and terrestrial data. It is known that the satellite measurements are homogeneously
distributed and have similar accuracy level in different regions. Contrary to that, coverage,
quality, and accuracy of the terrestrial data that are included in the combined model
vary from one region to another. Therefore, the resolution of the combined model also
depends on the terrestrial data and differs from one region to another. Hence, if the
terrestrial data are good, the model output can be as good as the formal resolution of the
model. However, in other regions where no data or only limited bad data are available,
then the regional resolution is expected to be worse than the formal resolution of the model.

Question 15: What is the difference between geoid undulation and height
anomaly?

Short Answer: Height anomaly is an approximation to geoid undulation according
to the Molodensky theory, where the density of the topography above the geoid is not
modelled.

Long Answer: Nowadays, with Global Navigational Satellite Systems (GNSS), it is
possible to measure the coordinates of a point in space independently from the gravity
field of the Earth, e.g., in cartesian coordinates, or, usually, with respect to a defined
normal ellipsoid, i.e., in ellipsoidal coordinates (see also question 4). Hence, also the
height of a point can be defined with respect to the ellipsoid. But, ellipsoidal heights
ht are not related to the gravity field and can not be used to derive where the water flows to.

The physical definition of heights related to the gravity field are the orthometric heights
H, which are the heights above the geoid. The difficulty is that the geoid in continental
areas lies inside the Earth and cannot be computed without knowledge about the density
of the masses between the geoid and the topography.
Alternatively, heights can also be defined without any hypothesis about densities inside the
Earth by normal heights H∗ which have been introduced by Molodensky (see Heiskanen
and Moritz [1967] and Moritz [2000]). In short, normal heights are an approximation
of orthometric heights by approximating the Earth’s surface by the so-called telluroid,
and the real gravity field by the normal gravity field. The telluroid is the surface defined
by Utelluroid = Wearthsurface (see question 4 for the definition of normal potential U).
Associated with this approach, the height anomaly ζ is the distance between the telluroid
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Figure 1: The ellipsoid, the geoid, and the height anomaly (taken from Barthelmes [2013]).

and the Earth’s surface, see Figure 1. For the ellipsoidal height ht of a point on the
Earth’s surface applies:

ht = H +N = H∗ + ζ (21)

The surface obtained by plotting the distance of height anomaly ζ above the ellipsoid is
called quasi-geoid . It is an approximation of the geoid, however, unlike the geoid, the
quasi-geoid is not an equipotential surface either in the normal or the actual gravity field.
For a given longitude λ and latitude φ the height anomaly ζ can be approximated by
the pseudo height anomaly on the ellipsoid ζe which can be derived from the disturbing
potential T (see question 4) by :

ζ(λ, φ) ≈ ζe(λ, φ) =
T (λ, φ)

γ(φ)
. (22)

To calculate the geoid from the pseudo height anomaly (i.e., from the quasi-geoid), it is
necessary to know the density distribution of all topographical masses above the geoid. A
first approximation is:

N(λ, φ) ≈ ζe(λ, φ)− 2πGρH2(λ, φ)

γ(φ)
, (23)

where ζe(λ, φ) is height anomaly on the ellipsoid, ρ is the density of the topography above
the geoid (assumed to be constant) and H is the height above the geoid.

Question 16: What is the zero-degree term concerning the geoid computa-
tion?

Answer: Unfortunately, the meaning of “zero degree term” is neither unique nor de-
scribed well. We will start with the definition of the Earth’s gravitational field and geoid,
and how the geoid is calculated from the spherical harmonic coefficients of a gravity field
model and explain the “zero degree term” and its use in geoid computation.

A spherical harmonic model of the Earth’s gravitational field consists of the fully normal-
ized unitless coefficients C`m and S`m, a value for the geocentric gravitational constant
GM , and a scaling factor R which is generally equal to the equatorial radius of an adopted
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mean-Earth ellipsoid, and geocentric polar coordinates (rp, θ, λ). For the model, R is noth-
ing more than a mathematical reference parameter. GM is an essential part of the model.
Multiplied by the coefficient C00 (i.e. GM ∗ C00) it represents the gravitational constant
times the mass of the Earth associated with the model, which means that C00 (which
is usually 1) scales the formal value of GM that is given with the model. Additionally
the tide system must be known (see also question 19). By using these parameters, we
can represent the 3-dimensional function of the geopotentialW (x, y, z) (outside the masses).

Geoid is one particular equipotential surface of the gravity potential of the Earth (Re-
member: the gravity potential is the gravitational potential plus the centrifugal potential).
Among all equipotential surfaces, geoid is the one which coincides with the undisturbed
sea surface and its fictitious continuation below the continents. If we knew the gravity
potential W , we would know all equipotential surfaces. However, we do not know which
one the geoid is. To calculate one particular equipotential surface of such a model we must
define the potential value W0=constant of this surface.

Geoid is usually given as geoid undulations or geoid heights with respect to a reference
system which consists of a best approximating (in the least squares sense) geometrical
rotational ellipsoid (normal ellipsoid) and an associated best approximating ellipsoidal
normal potential U = U(x, y, z). The defining parameters of such a reference system also
define (implicitly by some formulas) the value of U = U0 (ellipsoidal equipotential surface
of the normal potential = geometrical ellipsoid of the reference system which approximates
the Earth over the oceans). Moreover, the normal potential is defined in such a way that
its value on the normal ellipsoid is U = constant = U0 and approximates the real value
W0 as good as it is known (at the time when this reference system is defined). Hence, the
reference system also defines the value W0 = U0. By saying that, it is worth remembering
that the improvement of the estimation of W0 numerically is still under discussion and
requires up to date information due to small changes of gravity field potential (e.g., sea
level rise).

Following up the above discussion, we can simply say that zero degree term arises when
GM values between the geopotential model and reference ellipsoid differ and/or W0 is
chosen/calculated different than U0. Therefore, this term needs to be properly accounted
for to calculate the geoid undulation with respect to a known reference ellipsoidal surface
correctly. ICGEM Calculation Service takes into account the GM part and the geoid is
calculated with respect to the reference system which is selected by the user. That means,
the condition W = W0 = U0 is fulfilled per definition with respect to this “user selected”
reference system.
If we want to use an improved value of U0, we think that it is better to change the
reference system instead of adding a correction term afterwards. So, in our opinion, if
you calculate geoidal undulations with respect to WGS84 and add a correction due to a
different U0, then the values belong to another reference ellipsoidal surface and do not
belong to WGS84 anymore.

As mentioned above, the other part of the zero degree term is due to a possible difference
of the GM values between the Earth gravity constant of the gravity field model (GMmodel)
and the normal potential of the reference system (GMref ). The zero degree term for the
geoid undulation including both differences mentioned above can be computed as follows:
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N12 =
(GM1 −GM2)

(γ R)
− (W0 − U0)

γ
, (24)

where GM1 and GM2 refer to model GM, GMmodel and reference ellipsoid GM, GMref

values, respectively, and W0 and U0 refer to the gravity potential value on the geoid and
normal potential value on the ellipsoid, respectively. It is worth mentioning that the
ICGEM service does not use the second part of the formula (W0−U0)/γ in its calculations
(see also question 18). Also, note that the sign of the zero degree term is important.

Question 17: GRS80 and WGS84 are considered to be nearly the same.
Then, why are the geoid undulations different?

Answer: The difference between the geoid undulations computed with respect to the
two systems is due to the different values GM1 and GM2 used in the ellipsoidal model
(see question 16). The geoid difference referring to these two reference systems can be
computed by:

N12 =
(GM1 −GM2)

(γ R)
(25)

where GM(GRS80) = 3.986005 x 1014 m2/s2 and GM(WGS84) = 3.986004418 x 1014 m2/s2,
and the usual values for γ and R, N12 is approximately 0.93m.

Question 18: What is the origin of the disagreement between the ICGEM
geoid estimations using EGM2008 against NGA EGM2008 calculator?

Answer: The different handling of the zero degree term is the reason for the differences
between the “NGA EGM96 Geoid Calculator” and the ICGEM Calculation Service. Our
philosophy is not to change any coefficients of the models including the value of GM of the
model and, therefore not to change the defining parameters of the reference system with
respect to which the geoid should be calculated. The user have the option to include the
zero degree term in the calculations on ICGEM “Calculation Service” that is computed
based on different values of GM ∗ C00 of the geopotential model, and GM of the normal
potential, i.e., the reference system. Moreover, to use an improved value of W0(6= U0) we
think it is better to change the reference system (such that U0 = W0) instead of adding a
correction term afterwards. The user who would like to use their own reference system
can use the option “user defined ” in the calculation service of ICGEM.

For more detailed insight into this matter, the reader may refer to question 16 and to the
nice article by Dru A. Smith at:
http://www.ngs.noaa.gov/PUBS LIB/EGM96 GEOID PAPER/egm96 geoid paper.html

Question 19: What are the differences among the tide systems used in the
Calculation Service?

Answer: There are three tide systems that are considered in the computation of a
geoid model (see also, THE EGM96 GEOID UNDULATION WITH RESPECT TO THE
WGS84 ELLIPSOID). The geoid in the three systems can be summarized as follows:

15

http://www.ngs.noaa.gov/PUBS_LIB/EGM96_GEOID_PAPER/egm96_geoid_paper.html
http://cddis.nasa.gov/926/egm96/doc/S11.HTML
http://cddis.nasa.gov/926/egm96/doc/S11.HTML


• Tide-free (or nontidal): This geoid is considered for a tide-free Earth with all (direct
and indirect) effects of the Sun and Moon removed.

• Mean-tide: This geoid is considered in the presence of the Sun and the Moon (or,
equivalently, if no permanent tidal effects are removed).

• Zero-tide: This geoid is considered if the permanent direct effects of the Sun and Moon
are removed, but the indirect effect component related to the elastic deformation of
the Earth is retained.

The transformation between the different tide systems in our Calculation Service only
changes the coefficient C20.

Question 20: How does the Calculation Service compute a gravity field func-
tional at a particular point?

Answer: The 3D gravity field functionals explained in the answer to question 6 are
computed by the Calculation Service at arbitrary heights above the ellipsoid. For the
2D functionals, we will continue with the geoid undulation example. Geoid undulation
is defined as the distance between the geoidal surface and reference ellipsoidal surface.
Therefore, it makes no sense to refer to any height or surface once again since the geoid
height as well as the classical gravity anomaly and Bouguer anomaly are defined in 2D
and height component is already involved in the definition.

Question 21: What is meant by degree variances and error degree variances
used for the Evaluation of Global Geopotential Models?

Answer: Degree variances of the gravity field of the Earth correspond to the power
(square of the amplitude) of the field for each wavelength. It is similar to the spectrum
of a one-dimensional function. If the gravity field is represented in terms of spherical
harmonics, the degree variances can easily be computed from the spherical harmonic
coefficients and the spectrum can be given in terms of one of the gravity field functionals.

The error degree variance represents the noise characteristics of the gravity field for each
wavelength and together with the degree variances it helps assessing the accuracy of
the gravity field model. The user can refer to the following references for more detailed
explanation and examples, Satellite Gravity and Geosphere in Dickey et al. [1997] and
Gravity An Introduction by Reiner Rummel.

Question 22: What are the longitude and its limits and grid selection used
as input in the Calculation Service?

Answer: The default values in the input mask of the calculation service are longlimit
west =0◦ and longlimit east =360◦. The positive direction of the longitudes is eastwards.
The keywords “longlimit west” and “longlimit east” of the input mask of the calculation
service mean the following: The value for “longlimit west” must be smaller than (or equal
to) the value for “longlimit east”. The longitudes can range from 0◦ to 360◦ (0◦ to 2π)
or from -180◦ to 180◦ (−π to π), i.e., negative values are also allowed. If both values are
negative, 360◦ will be added due to nature of the program coded.
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Here are some examples:

a To produce a global grid one can enter the following values:
longlimit west = -180◦

longlimit east = 180◦

or
longlimit west = 0◦

longlimit east = 360◦.

However, in both cases the longitudes 0◦ = 360◦ or -180◦ = 180◦ are twice in the
calculated grid (which is not necessary for plotting but it doesn’t matter).

b For regional grids all combinations are possible as long as longlimit west < longlimit east:
e.g., longlimit west = 13.123◦

longlimit east = 27.456◦

or
longlimit west = -80◦

longlimit east = -60◦,

where the negative longitudes −80 and −60 will internally be changed to 280◦ to
300◦ in the grid file.

In the ICGEM Calculation Service, number of grid points to compute in one run is limited
to 300,000 for the four time-consuming functionals (gravity anomaly, gravity anomaly cl,
gravity disturbance, gravity earth) and 6,500,000 for all others. Accordingly, the user
can compute the complete sphere with a grid step of 0.5◦. Limiting the region, higher
resolution output can be retrieved .

Question 23: What are EIGEN-6C time dependent coefficients?

Short Answer: Time-dependent coefficients represent the time variations of the model
(e.g., annual changes).

Long Answer: Our knowledge about the global gravity field (i.e., the accuracy of the
global models) has become better and better and now it is possible to calculate not only
mean models over a long period of measurements, but also time variations of the gravity
field. Accordingly, the models from short time periods (one month or shorter) are also
calculated and publicly available. However, these models have naturally lower spatial
resolution due to the limits of short term observations.

As a result of combining mean models and models from monthly solutions, some additional
parameters can be introduced to the mean model solutions. For instance, the models
EIGEN-6S and EIGEN-6C contain, additionally to the (traditional) spherical harmonic
coefficients, also some parameters which describe some basic time variations of these
spherical harmonic coefficients. These additional parameters are the amplitudes of sine
and cosine shaped time variations with annual and semi-annual periods as well as values
for the linear trends of all coefficients up to degree and order 50. These new parameters
are important, e.g., for exact orbit calculations or special investigations of time variations
of the gravity field. If we want to calculate a functional from such a model, we have to
know the epoch of interest. Then, in the first step, we use the formulas given in the header
of the model to calculate the coefficients for this epoch. In the second step, we use the
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coefficients of this epoch in the same way as for the static models.

Question 24: What is the difference between the monthly GRACE models
developed by different centres?

Answer: The software packages of the three analysis centres CSR, GFZ, and JPL are
independent. However, they use the same data and data processing standards to generate
the GRACE Level-2 products. Same processing standards (see also CSR Level 2 Process-
ing Standards Release 5, GFZ Level 2 Processing Standards Release 5, and JPL Level 2
Processing Standards Release 5) here mean the common properties of the data processing
(e.g., removing solid Earth tides and atmospheric effects from measurements). However,
mathematical methods applied in designing measurement equations and techniques used in
retrieving their solutions vary among the three centres and this results in different model
coefficients.

The three centres release unconstrained solutions which means that no data external to
GRACE measurements are involved nor any regularization (sometimes called stabilization)
is used in the solution. As an advantage, users are free to develop their own filtering
technique or apply the commonly used filters (also offered in the ICGEM Calculation
Service) in order to remove the effects that come from the larger errors of high degree
coefficients, and they do not have to start with data that are already filtered or modified.
The disadvantage of the unconstrained models is the fact that the high degree coefficients
have larger errors and they are not suggested to be used directly (without any filtering).

Question 25: a) What does Equivalent Water Height (EWH) mean?
b) Based on which formulas do you estimate the EWH from monthly
GRACE models?

Answer: a) Differences of monthly solutions (e.g., disturbance potential, geoid undu-
lation) are caused by mass redistributions. Most of the effects are well-known (e.g., air
pressure effects, tides) and can be modelled and removed from the measurements. Hence,
the residual differences after eliminating the well-known effects are assumed to be mainly
caused by water redistribution.

For example, if we take geoid differences between monthly solutions, in order to estimate
how much the water stocks vary (increase or decrease in the amount of water), we need
to modify our question into: How much water (Equivalent Water Height) is needed and
how the distribution of the water should be in order to create that much geoid undulation
difference between the monthly solutions?

b)The functional Equivalent Water Heights (EWH) is mainly used to interpret the dif-
ferences of monthly solutions with respect to a mean model. Therefore, the EWHs are
computed from the spherical harmonic coefficients of the monthly models minus the
coefficients of a mean model (EIGEN-6, Förste et al. [2012]). These difference-coefficients
can be used after filtering or without filtering. The user should be aware of the high
commission error (see questions 12 and 26) in high degree coefficients if the unfiltered
coefficients are used. The user can also select filtered coefficients in the Calculation Service.
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For calculating the functional “water column” (which means EWH) from a gravity field
model the elastic deformation of the Earth due to the load of the water layer is considered.
The exact formulas used in the Calculation Service for computing EWH from spherical
harmonic coefficients of a gravity field model are described in Wahr et al. [1998] and Wahr
[2007].

Question 26: Which series of monthly model is the best (for e.g., hydrol-
ogy)? How should I filter these models?

Answer: From point of view of ICGEM, it is not possible to say that the models from one
centre are better (for some particular problem, e.g., hydrology) than the others. Best idea
is to use the models from all the three centres and compare them. The monthly solutions
of the three centres are produced unconstrained (see question 24) and are provided without
any filtering. Because, filtering characteristics depend on the specific application. Making
decision of which filter to be used and how strong filtering is necessary, needs to be
investigated and realized for each particular problem or application separately. Therefore,
only the user can decide how to filter the monthly models.

ICGEM offers commonly used Gaussian filter in its Calculation Service. Using the
Calculation Service, the user can apply the Gaussian filter immediately to the results of
the computation. On the other hand, besides Gaussian filter, ICGEM offers de-correlation
filters DDK on GFZ GRACE Gravity (G3) Browser. The user can use the pre-filtered
coefficients to compute the equivalent water height or height anomaly via the G3 Browser.

Question 27: How can I compute a gravity field functional at an arbitrary
time t?

Answer: Some of the gravity field models do not depend only on the spatial coordinates
(x, y, z) or (r, λ, θ) but also on time (see also question 23). A static model consists of
the spherical harmonic coefficients C(`,m) and S(`,m) where ` is called degree, and m
is called order. The gravity potential W (of such a static model) at a given position,
W (r, λ, θ), is calculated by summing up over degree and order of a spherical harmonic
expansion (see, e.g., equation 108 of the report: Theory).

For instance, in the model GOCO05S each coefficient (up to degree and order 100) has a
static part, a linear trend with time and a sinusoidal time change with an annual period.
If G(t) is a coefficient, C`m(t) or S`m(t), its value for the time t is:

G(t) = gfct(t0)+trnd∗(t−t0)+asin∗sin
(

2π (t− t0)
T

)
+acos∗cos

(
2π (t− t0)

T

)
, (26)

where gfct(t0) is the static part at time t0, trnd is the linear trend, asin is the amplitude
of the sine-part, acos is the amplitude of the cosine-part, T is the annual period.

It is worth remembering that the amplitude and phase of a sinusoidal wave with fixed
period can be transformed mathematically into a sine-amplitude and a cosine-amplitude
with the same period.
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Question 28: Why is gravitational potential usually negative in physics and
positive in geodesy?:

Answer: According to Newton’s law of gravitation, gravity is always an attractive force.
The closer an object with mass moves towards another object with mass, the larger
the attractive force becomes. However, the definition of gravity potential is not unique.
Gravity potential itself is not a quantity that can be measured directly, but the gravity
potential differences can be measured. Accordingly, we can say that gravity potential can
only be measured with respect to a reference potential, hence the nature of potential is
that the zero point is arbitrary.

It is a convention in physics as well as in geodesy, and seems logical to set the potential
“zero” at infinite distance. Now, imagine a mass at infinity, at “zero” potential. In
physics, when the mass starts falling, it gains kinematic energy and loses potential energy.
Therefore, the potential energy will decrease with respect to the start point which is at
infinity. Hence, potential will decrease as the mass approaches the Earth. As a result, the
potential is always negative and gravity ~g and potential W are mathematically connected
by:

~g = −grad W. (27)

In geodesy, the potential W is defined with positive sign (opposite to the definition in
physics). Hence gravity ~g and potential W are connected by:

~g = grad W. (28)

Therefore, the definitions of potential in physics and geodesy show a sign difference which
should not create any confusion.

Question 29: How can I submit a model to ICGEM and get a DOI for it?

Answer: ICGEM does not have any restriction on the submission of the models. Anyone
can submit a model with the required minimum information provided along with model
coefficients. Typically the author(s) can e-mail their model coefficients to icgem@gfz-
potsdam.de in the .gfc format. It is recommended to include a header where the model
characteristics (e.g. input data, a-priori information if used any, processing procedures,
and references) are given (see also DOI landing page example). More details regarding the
ICGEM format can be found in ICGEM format in detail. Please make sure the coefficients
are in the correct format. Even though ICGEM performs standard quick-look assessments
of the data and confirm that the model outputs do not produce any unnatural behaviour,
this does not guarantee that the coefficient file is carefully checked. The authors are
recommended to view one of the recent models to get familiar with the header and the
format of the coefficient file as well.

In order to request a DOI number for the model coefficients, ICGEM asks the user to fill the
Metadata Editor of GFZ Data Services first and submit the model to icgem@gfz-potsdam
after receiving the citation and licence for the model and adding both information in the
header of the data. An example XML file is available and can be loaded in the Editor and
edited. A local copy can be saved via “Save as” and by clicking on “submit” the metadata
will be sent to GFZ Data Services. The documentation of the Metadata Editor can be
found via About/Help on top of the same page at Quick Start for Data Publication, GFZ
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Metadata Editor and Explanation for Metadata Fields. Filling the form with necessary
information ensures the fast assignment of DOI number and publication of the model on
ICGEM.

Question 30: Why are the gravity anomalies computed from topographic
gravity field models much larger than the measured gravity field anomalies
or gravity anomalies computed from global gravity field models (e.g. static)?

Short answer: Because positive topographic anomalies on Earth are mostly compensated
by negative gravity anomalies in the crust.

Long answer: The total gravity field is composed of different parts: topography, ice
sheets, ocean, Earth’s crust, and mantle. At first sight it might seem strange that the
observed gravity field, being the sum of all these components, has much smaller anomalies
than one of its components, the topography. The reason is that on Earth large positive
gravity anomalies due to topography are underlain by large negative anomalies in the
crust, and vice versa.
Take a large mountain belt such as the Himalayas. The weight of this mountain chain
would cause the Earth’s crust to bend and material below the crust to move down and
sideways, causing the Himalaya to sink into the Earth over very long time (say hundred
million years). Thus, a large mountain can only exist for geologic time if it is supported
by material of a low density with respect to the higher background mantle density. This
principle is called isostasy, and is similar to an iceberg in floating water: the weight of the
iceberg above the water is supported by the part of the iceberg that is below the water,
which causes upwards force of the water because ice is less dense than water. The principle
of isostasy for the Earth’s topography was formulated in the 19th century by Airy and
Pratt and others, triggered by measurements under leadership of Bouguer in the 18th
century which showed much smaller gravity anomaly in the Andes than expected based
on the size of the mountains Hofmann-Wellenhof and Moritz [2006] and WIKIPEDIA.

More information:The principle of isostasy requires that there is a material of lower
density below the mountains, but what is it exactly?

In the case of the Himalayas, seismic measurements have shown that the Earth’s crust is
thicker there. That means that in the bottom part of the crust, we have material with a
density of 2700 kg/m3 instead of a mantle density of 3300 kg/m3 such as in a ‘normal’
part of the Earth. Compared to a reference Earth which is assumed to have a standard
crust and mantle, we have a negative anomaly. Note that the reference Earth is crucial
here, because it determines that we have positive and negative anomalies. However, it
is not relevant what exactly the reference Earth model (e.g. ellipsoid, sphere) is. The
reference Earth has no influence on the spatial pattern and spread in the topographic
anomalies if you make a plot for part of the Earth, it will only shift, increase or decrease
the anomalies by the same amount.

How can we calculate how much of the topography is compensated?

This is difficult to calculate since we do not know exactly what the Earth’s interior looks
like. There are approximations, such as the Airy approximation which says that the
weight of the topography is compensated exactly by making the crust thicker, or the Pratt
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approximation which says that the weight of topography is compensated by a locally less
dense crust. Neither of these will be a perfect explanation for the real Earth, but of course
they are useful for reducing the signal content before geoid modelling.
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