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1 Introduction

The intention of this article is to present the de nitions of di erent f unctionals of the Earth's gravity
eld and possibilities for their approximative calculation from a mathem atical representation of the
outer potential. In history this topic has usually been treated in connection with the boundary value
problems of geodesy, i.e. starting from measurements at the Eahnts surface and their use to derive a
mathematical representation of the geopotential.

Nowadays global gravity eld models, mainly derived from satellite measurements, become more and
more detailed and accurate and, additionally, the global topograply can be determined by modern satel-
lite methods independently from the gravity eld. On the one hand th e accuracy of these gravity eld
models has to be evaluated and on the other hand they should be cdrimed with classical (e.g. gravity
anomalies) or recent (e.g. GPS-levelling-derived or altimetry-derive geoid heights) data. Furthermore,
an important task of geodesy is to make the gravity eld functionals available to other geosciences. For
all these purposes it is necessary to calculate the correspondingrfctionals as accurately as possible
or, at least, with a well-de ned accuracy from a given global gravity eld model and, if required, with
simultaneous consideration of the topography model.

We will start from the potential, formulate the de nition of some fun ctionals and derive the formulas
for the calculation. In doing so we assume that the Earth's gravity potential is known outside the
masses, the normal potential outside the ellipsoid and that mathemtical representations are available
for both. Here we neglect time variations and deal with the stationay part of the potential only.

Approximate calculation formulas with di erent accuracies are formulated and speci ed for the case
that the mathematical representation of the potential is in terms of spherical harmonics. The accuracies
of the formulas are demonstrated by practical calculations using he gravity eld model EIGEN-6C2
(Ferste et al., 2012).

More or less, what is compiled here is well-known in physical geodesy budlistributed over a lot of
articles and books which are not cited here. In the rst instance this text is targeted at non-geodesists
and it should be \stand-alone readable".

Textbooks for further study of physical geodesy are (Heiskane & Moritz, 1967; Pick et al., 1973;
Varcek & Krakiwsky, 1982; Torge, 1991; Moritz, 1989; Hofmann-Wellenhof & Moritz, 2005).

2 De nitions
2.1 The Potential and the Geoid

As it is well-known, according to Newton's law of gravitation, the potential W, of an attractive body
with mass density is the integral (written in cartesian coordinates x;y; z)

ZZZ (XO. yO. ZO)
Wa(x;y;z) = G p L2 dx’dydz° (1)
(x x92+(y y92+(z 292

Vv

over the volumev of the bO(Hy, where G is the Newtonian gravitational constant, anddv = dx%ly%z° is
the element of volume. For (x x92+(y y92+(z 2z9211 the potential W, behaves like the
potential of a point mass located at the bodies centre of mass withhe total mass of the body. It can
be shown that W, satis es Poisson's equation

r’W,= 4G (2)

where r is the Nabla operator andr 2 is called the Laplace operator (e.g. Bronshtein et al., 2004).
Outside the masses the density is zero andW, satis es Laplace's equation

r°Wa=0 3)
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thus W, is a harmonic function in empty space (e.g. Blakely, 1995).
On the rotating Earth, additionally to the attracting force, also th e centrifugal force is acting which
can be described by its (non-harmonic) centrifugal potential

(xy;i2)= 312 @

. . P—>——. . . .
where! is the angular velocity of the Earthand d, = = x2 + y2 is the distance to the rotational (z-) axis.
Hence, the potential W associated with the rotating Earth (e.g. in an Earth- xed rotating coordinate
system) is the sum of the attraction potential W, and the centrifugal potential

W = W, + )
The associated force vectorg acting on a unit mass, the gravity vector, is the gradient of the potential
g=r W (6)

and the magnitude
g=jr Wj )

is called gravity. Potentials can be described (and intuitively visualised) by its equipoential surfaces.
From the theory of harmonic functions it is known, that the knowledge of one equipotential surface is
su cient to de ne the whole harmonic function outside this surface .

For the Earth one equipotential surface is of particular importance: the geoid Among all equipoten-
tial surfaces, the geoid is the one which coincides with the undisturbd sea surface (i.e. sea in static
equilibrium) and its ctitious continuation below the continents as ske tched in Fig. 1 (e.g. Varcek &
Christou, 1994, Varcek & Krakiwsky, 1982 or Hofmann-Wellenh of & Moritz, 2005). Being an equipo-

Figure 1. The ellipsoid, the geoid and the topography

tential surface, the geoid is a surface to which the force of grawtis everywhere perpendicular (but not
equal in magnitude!). To de ne the geoid surface in space, simply theorrect value Wy of the potential
has to be chosen:

‘W(x;y;z) = Wp = constant‘ (8)

As usual we split the potential W into the normal potential U and the disturbing potential T

W(xy;z) = U(xy;z)+ T(Xy;2) )
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and de ne \shape" and \strengths" of the normal potential as follows: (a) The equipotential surface
of the normal potential U for which holds U(x;y;z) = Up should have the shape of an ellipsoid of
revolution, and (b) this equipontial surface should approximate the geoid, i.e. the undisturbed sea
surface, as good as possible, i.e. in a least squares t sense. Frometlatter it follows Uy = Wy
(compare eq. 8). It is advantageous to de ne ellipsoidal coordinats (; ; ) with respect to this level
ellipsoid U(h = 0) = Uy = Wy, where h is the height above ellipsoid (measured along the ellipsoidal
normal), is the ellipsoidal longitude and the ellipsoidal latitude. Thus eq. (9) writes (note that the
normal potential U does not depend on ):

(W(hi s )= Uh )+ T(hi; )] (10)

and the geoid, in ellipsoidal coordinates, is the equipotential surfae for which holds

W h=N(; );; =U(h=0); =U (11)

whereN (; ) is the usual representation of the geoid as heightbl with respect to the ellipsoid (U = Up)

as a function of the coordinates and . Thus N are the undulations of the geoidal surface with respect to
the ellipsoid. This geometrical ellipsoid together with the normal ellipsddal potential is called Geodetic
Reference System(e.g. NIMA, 2000 or Moritz, 1980). Now, with the ellipsoid and the gedd, we have
two reference surfaces with respect to which the height of a pointan be given. We will denote the
height of the Earth's surface, i.e. the height of the topography, with respect to the ellipsoid by h;, and

with respect to the geoid by H, hence it is (see g. 1):

[h(; )= NG )+H(G )| (12)

HereH is assumed to be measured along the ellipsoidal normal and not alongé¢ real plumb line, hence
it is not exactly the orthometric height. A discussion of this problem can be found in (Jekeli, 2000).
Like the potential W (eq. 5) the normal potential also consists of an attractive part U, and the
centrifugal potential
U= U, + (13)

and obviously, the disturbing potential
T(h; 5 )= Wa(h;; ) Ua(h; ) (14)

does not contain the centrifugal potential and is harmonic outsidethe masses. The gradient of the
normal potential
~=r U (15)

is called normal gravity vector and the magnitude
= jr Uj (16)

is the normal gravity.

For functions generated by mass distributions likeW, from eq. (1), which are harmonic outside the
masses, there are harmonic or analytic continuation®V$ which are equal toW, outside the masses and
are (unlike W,) also harmonic inside the generating masses. But the domain whe/, is harmonic, i.e.
satis es Laplace's equation (eq. 3), can not be extended complele into its generating masses because
there must be singularities somewhere to generate the potential,tdeast, as is well known, at one point
at the centre if the mass distribution is spherically symmetric. How these singularities look like (point-,
line-, or surface-singularities) and how they are distributed depeds on the structure of the function W,
outside the masses, i.e. (due to eq. 1) on the density distribution of the masses. Generally one can say
that these singularities are deeper, e.g. closer to the centre of mnsg, if the potential W, is \smoother".
For further study of this topic see (Zidarov, 1990) or (Moritz, 1989).
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Due to the fact that the height H = hy N of the topography with respect to the geoid is small
compared to the mean radius of the Earth and that in practise the gatial resolution (i.e. the roughness)
of the approximative model for the potential W, will be limited (e.g. nite nhumber of coe cients or
nite number of sampling points), we expect that the singularities of the downward continuation of W,
lie deeper than the geoid and assume tha¥Vy exists without singularities down to the geoid so that we
can de ne (h; is the ellipsoidal height of the Earth's surface, see eq. 12):

With; s ) = Wa(h;; ) for h h
r2zwg = 0 for h  min(N;hy) (17)
Weh;; ) = Wgh;; )+ ( h )

However, this can not be guaranteed and has to be veri ed, at leasnumerically, in practical applications.

From its de nition the normal potential U, is harmonic outside the normal ellipsoid and it is known
that a harmonic downward continuation U exists down to a singular disk in the centre of the attened
rotational ellipsoid (e.g. Zidarov, 1990). Thus, downward continuaion of the normal potential is no
problem and we can de ne

Us(h; ) = Ua(h; ) for h 0
ravg = 0 for h  min(N;0;h;) (18)
ucth; ) = Ug(h; )+ ( h; )
and hence
Te(hi s ) = Wghi; ) Ug(h; ) (19)
r2te = 0 for h  min(N;hy)

2.2 The Height Anomaly

The height anomaly (; ), the well known approximation of the geoid undulation according to Molo-
densky's theory, can be de ned by the distance from the Earth's sirface to the point where the normal
potential U has the same value as the geopotentidlV at the Earth's surface (Molodensky et al., 1962;
Hofmann-Wellenhof & Moritz, 2005; Moritz, 1989):

(Wi )=U(h ;1 )] (20)

where h; is the ellipsoidal height of the Earth's surface (eq. 12). An illustration of the geometrical
situation is given in g. (2). The surface with the height = (; ) with respect to the ellipsoid is often
called quasigeoid(not shown in g. 2) and the surface h; is calledtelluroid. It should be emphasised,
that the quasigeoid has no physical meaning but is an approximation bthe geoid as we will see. In
areas whereh; = N (or H = 0) i.e. over sea, the quasigeoid coincides with the geoid as can be see
easily from the de nition in eq. (20) if we use eq. (12):

WN+H;; )=UN+H ;) (21)

setH =0 and get
W(N; 5 )= UN ;) (22)

and use eq. (11), the de nition of the geoid to write

u@; )=UN ;) (23)
from which follows

IN=  for H=0]| (24)
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topography

telluroid
W = Wl Sl
UEAS6) cllipsoid

Figure 2. The ellipsoid, the geoid, and the height anomaly

In the history of geodesy the great importance of the height anoraly was that it can be calculated
from gravity measurements carried out at the Earth's surface wihout knowledge of the potential inside
the masses, i.e. without any hypothesis about the mass densities.

The de nition of eq. (20) is not restricted to heights h = h; on the Earth's surface, thus a generalised
height anomaly 4= g(h; ; ) for arbitrary heights h can be de ned by:

W(h;; )=U(h 4 ) (25)

2.3 The Gravity Disturbance

The gradient of the disturbing potential T is called the gravity disturbance vectorand is usually denoted
by 9:

g(h;; )=rT(h;; )=rW(h;; ) r Uh;) (26)
The gravity disturbance g is not the magnitude of the gravity disturbance vector (as one could guss)
but de ned as the di erence of the magnitudes (Hofmann-Wellenhd & Moritz, 2005):

gth;; )= rw(h;; ) rU; ) (27)

In principle, herewith g is de ned for any height h if the potentials W and U are de ned there.
Additionally, with the downward continuations WS and U¢ (egs. 17 and 18), we can de ne a \harmonic
downward continued” gravity disturbance

gh;; )= rWwW¢h;; ) ruUh; ) (28)

With the notations from egs. (7) and (16) we can write the gravity disturbance in its common form:

[g(hi; )=oghi: ) (h)] 29)

The reason for this de nition is the practical measurement proces, where the gravimeter measures only
jr Wj, the magnitude of the gravity, and not the direction of the plumb line.
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2.4 The Gravity Anomaly

The term gravity anomaly is used with numerous di erent meanings in geodesy and geophysicand,
moreover, there are di erent practical realisations (cf. Hackney & Featherstone, 2003). Here we will con-
ne ourselves to the classical free air gravity anomaly, to the gravity anomaly according to Molodensky's
theory and to the topography-reduced gravity anomaly

2.4.1 The Classical De nition

The classical (historical) de nition in geodesy is the following (cf. Hofmann-Wellenhof & Moritz, 2005):
The gravity anomaly gq (subscript \cl" stands for \classical") is the magnitude of the downward
continued gravity jr W€¢j (eq. 17) onto the geoid minus the normal gravity jr Uj on the ellipsoid at the
same ellipsoidal longitude and latitude

Ga(; )= rWEN;; ) ru@©; ) (30)

The origin of this de nition is the (historical) geodetic practise where the altitude of the gravity mea-
surement was known only with respect to the geoid from levelling but ot with respect to the ellipsoid.
The geoid heightN was unknown and should be determined just by these measuremet The classical
formulation of this problem is the Stokes' integral (e.g. Hofmann-Wellenhof & Moritz, 2005; Martinec,
1998). For this purpose the measured gravityjr W (h; ; )j has to be reduced somehow down onto the
geoid and the exact way to do so is the harmonic downward continuabn of the attraction potential W,
(eqg. 17). This is the reason for the de nition of the classical graviy anomaly in eq. (30). In practise
the so-called \free air reduction" has been or is used to gejr WE(N; ; )j approximately. Thus the
classical gravity anomaly depends on longitude and latitude only and isot a function in space.

2.4.2 The Modern De nition

The generalised gravity anomaly g according to Molodensky's theory (Molodensky et al., 1962; Hofman-
Wellenhof & Moritz, 2005; Moritz, 1989) is the magnitude of the gravty at a given point (h; ; ) minus
the normal gravity at the same ellipsoidal longitude and latitude but at the ellipsoidal height h ¢,
where ¢ is the generalised height anomaly from de nition (25):

gh;; )= rwc;; ) rUth 4 ); for h b (31)

or in its common form:

(o )=o) (W g )] (32)

Here the height h is assumed on or outside the Earth's surface, i.eh  h;, hence with this de nition
the gravity anomaly is a function in the space outside the masses. Té advantage of this de nition is
that the measured gravity jr Wj at the Earth's surface can be used without downward continuationor
any reduction. If geodesists nowadays speak about gravity anoaties, they usually have in mind this
de nition with h = hy, i.e. on the Earth's surface.

2.4.3 The Topography-Reduced Gravity Anomaly

For many purposes a functional of the gravitational potential is needed which is the di erence between
the real gravity and the gravity of the reference potential and which, additionally, does not contain the
e ect of the topographical masses above the geoid. The well-know\Bouguer anomaly" or \Re ned
Bouguer anomaly" (e.g. Hofmann-Wellenhof & Moritz, 2005) are conmonly used in this connection.
However, they are de ned by reduction formulas and not as funcionals of the potential. The problems
arising when using the concepts of the Bouguer plate or the Bougueshell are discussed in (Varcek
et al., 2001) and (Varcek et al., 2004).
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Thus, let us de ne the gravitational potential of the topography V4, i.e. the potential induced by all
masses lying above the geoid. Analogously to eq. (27), we can now de a gravity disturbance gy
which does not contain the gravity e ect of the topography:

gu (hi; )= 1 W(h;; ) V() ruch; ) (33)

and, analogously to eq. (31), atopography-reduced gravity anomaly g :

e (hy; )= 1 W(h;; ) W(h;; ) ruth ;) (34)

where, consequentlyW V; is the gravity potential of the Earth without the masses above the geoid.
Note, this is not the same as

Gr (h;; )= rWw(h;; ) ruUth ;) rWh; )

which is also used sometimes. An additional di culty here is that the to pography reduced potential

W V; has a changed geoid with respect to which the topography should bmeasured now. Consequently,
a new normal potential Uy should be de ned and used as well as the height anomaly in eq. (34) should

refer to the topography reduced potential. Obviously, di erent d e nitions of a topography reduced gravity
anomaly are possible. Thus, in this context, it is important to know how and for which purpose things

are de ned.

The practical di culty is, that the potential  V; (or it's functionals) cannot be measured directly but
can only be calculated approximately by using a digital terrain model d the whole Earth and, moreover,
a hypothesis about the density distribution of the masses.

Approximate realisations of such anomalies are mainly used in geophics and geology because they
show the e ects of di erent rock densities of the subsurface. Ifgeophysicists or geologists speak about
gravity anomalies they usually have in mind this type of anomalies.

3 Approximation and Calculation
3.1 The Geoid

As one can see from the de nition in eq. (8) or eq. (11), the calculaibn of the geoid is the (iterative)

search of all points in space which have the same gravity potentiaWW = Wy = Ug. Let us assume
that the geopotential W (h; ; ) is known also inside the masses antll;(; ) is a known approximative

value for the exact geoid heightN (; ) (e.g. as result of the i-th step of an iterative procedure). Here
we should have in mind that the representationN of the geoidal surface is with respect to the normal
ellipsoid which already is a good approximation of the geoid in the sensehat the biggest deviations of
the geoid from the ellipsoid with respect to its semi-major axis is in the oder of 10 5.

The dierence W(N) W(N;) for the coordinates and is (approximately):

ew
@hh:Ni

The ellipsoidal elevation h is taken along the ellipsoidal normal which is given by the negative diretion
of the gradient of the normal potential ].rr 8;- Thus the partial derivative %Y can be represented by
the normal component of the gradientr W, i.e. by the projection onto the normal plumb line direction

W(N) W(Ni) (N Nj) (35)

W r U
@— = — I (36)
@h r Uj
or, because the directions of W and r U nearly coincide, by:
@wW rw
—_— - - r =rw 37
@h jr Wj (37)
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wherehajBi denotes the scalar product of the vectorsaand B and, if @ has the unit length as in eqgs. (36)
and (37), the projection of B onto the direction of & By replacing W(N) by Uy according to eq. (11)
and with the notation g= jr Wj (eq. 7) we can write

Uo W(Nj) g(Ni)(N  Nj) (38)
for eqg. (35) and thus the geoid heightN can (approximately) be calculated by

1
N + W W(Ni) Uo (39)
and the reasons for\ "instead of \=" are the linearisation in eg. (35) and the approximatio nin eq. (37).
That means, if the gravity potential W is known also inside the topographic masses, eq. (39) can be
used to calculate the geoid iteratively with arbitrary accuracy for each point (; ):

_
o(Nis 5 )
provided that we have an appropriate starting value for the iteration and the iteration converges. Re-
placing the gravity g(N;) (eq. 7) by the normal gravity (0) (eq. 16) will not change the behaviour of

this iteration, because each step will be scaled only by a factor of (1 g=), which is in the order of
10 4 or smaller. So we write:

Nisa (; )= Ni(; )+ W(Ni;; ) U (40)

Nt ()= NG )+ 55 WS ) U (41)
With i =0 and No =0 in eq. (41) we get:
. — 1 ..
Nl(! )_ (0' ) W(Ov ’ ) UO (42)
and with W(0) = Up + T(0) (eq. 10) we nally have
o 105 )
Ni(; )= DR (43)

as a rst approximate value for N (; ) which is the well-known Bruns' formula (e.g. Hofmann-Wellenhof
& Moritz, 2005).
To get an estimation of the dierence N, N from eq. (41) we write:

1

Na(; ) Ni(5 )= ) W(Ny1;; ) U (44)
and replace againW by U + T (eq. 10) and get:
1
No(; ) Ni(; )= ) U(Ng; 5 )+ T(Ng; 5 ) U (45)
With the linearisation
U(N;) U@+ N QU (46)
1 1 @hh:0
and the notation (cf. eq. 16)
ruJ @u
= = - = iy 47
ru U ru @h 47
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we get
1

©; )
Replacing N1 on the right hand side by Bruns' formula (eq. 43) we get

Na(; ) Nu(s )

(0; )JNpg+ T(Ng; 5 ) (48)

T(Ny; 5 ) T@O;; )

N2(; ) Nu(5 ) 0 ) (49)
for the di erence, and for N:
: T(Ng; ;)
N2(; ) —0 ) (50)
The dierence T(N1) T(0) in eq. (49) can be approximated by
@T
T(N TO) Ni — 51
N) TO NG (51)
and we get
1 @T
N2 Nj_ N]_ W @hh:o (52)

The factor on the right hand side which scalesN; is in the order of 10 # or smaller, i.e. N» N7 is in
the order of some millimetres. That means we can expect (if eq. 41 cwerges fast, i.e. if the step size
decays rapidly) that N1 is a good approximation ofN and with eq. (50) we can de ne

=T(N1;; ) N, 1+ 1 @T

N2 ©; ) (0) @h,

(53)

which should be even better.

Usually we don't know the potential inside the masses, therefore wavill do the following: We replace
W,, the attraction part of W, by its harmonic downward continuation WS (eq. 17) and thusT by T¢
(eg. 19) and compute an associated geoid heightl °(; ) which is also an approximation of the real
geoid heightN. Then we try to calculate (approximately) the dierence N N € caused by the masses
above the geoid. Analogous to the iterative calculation of the geoid kight N from the potential W by
eg. (41) the calculation of N ¢ from W€ writes:

1
©; )

N& ()= NS )+ WE(NFS 5 ) Uo (54)

Obviously egs. (43) to (53) are also valid for the harmonic downwardcontinued potential T¢ instead of
T, thus N1 and N{ or even better N, and N3 are good approximations forN and N © respectively:

NEG )= (55)
er. v_ TENE; 5 ) c 1 ©@F
A T I O N1 9

The convergence behaviour of the iterative solution in eq. (41) or %4) will not be discussed in (theoret-
ical) detail here. However, if we consider that the maximum relative d erences between the ellipsoidal
normal potential U and the real potential W are in the order of 10 ® (as mentioned above) a very fast
convergence can be expected, which is con rmed by the practicadalculations in section (5) (cf. gs. 6
and 7).
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To estimate the dierence N  N¢ between the real geoid and the approximated geoid using the
downward continued potential we useN, and N5 from egs. (53) and (56) and write

. C( . 1 .. Cc C. . l
N(v ) N (1 ) (0, ) T(va ’ ) T (N]_’ ' ) (0' )
To estimate the dierence T T¢in eq. (57) by using information about the topography we introducethe
potential V;(h; ; ), induced by all topographical masses above the geoid, which desibes the potential
also inside the masses, and the potential,°(h; ; ), the harmonic downward continuation of V;. To
get the harmonic downward continuation T¢ of the disturbing potential T down to the geoid, we must
downward continue only the part of the potential caused by the tgpographic masses and write

T(N;; ) TYN;; ) (57)

TON;; )= T(N; 5 ) V(N; 5 )+ VE(N; 5 ) (58)
Then for eq. (57) we get
1

N(; ) NS ) ) Ve(N; 5 ) V(N5 ) (59)
and for the geoid height:
1
N(; ) NG )+ mvt(N;; ) V(NG ) (60)

To nd an approximation of the di erence V; V,®in eq. (59) let's treat the potential Vs(r) of a spherical
mass shell from radiusR; to R, with constant mass density (see g. 3).

topograph

spherical shell with
density I

4

‘

geoid

v
,/“

Figure 3: Approximation of the topography at one point ( ; ) by a spherical shell of homogenous
mass density

The potential outside the shell is

M
Vs(r) = Grs for r Ry (61)

where M is the total mass of the shell andG is the gravitational constant. For r R it is the same
potential than that of a point mass with the same total mass M located at the origin of the coordinate
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system. Hence the downward continuation of eq. (61) is simply the ame formula de ned for smaller

values ofr:
GMg

r

VE(r) = for 1 R; (62)

The massM; of the shell is
Mo= 4 (R} RY (63
Below the shell (inside the mass free inner sphere) the potential isanstant:
Vs(r)=2 G (R3 R?) for r Ry (64)

Using this simple spherical shell approximation for the topographicd masses with the heightH above
the geoid at one specic point (; ), we get for V¢, the downward continued potential on the geoid,
from egs. (62) and (63) withr = R; and R, = R; + H

VE(N) 4§‘ (R1+Ez3 R{ =4 G R1H+H2+:?!i (65)
and for V;, the potential inside the masses on the geoid, from eq. (64)
Vi(N) 2G  (Ri+H)?2 R? =2 G (2RiH + H? (66)
Thus the dierence Vi(N) V,(N) can be approximated by
Vi(N)  VE(N) 2G 2R{H+H? 2RH 2H?2 :23%13
2G Hh%: = 2GH 2 1+32T|:1 (67)

and if we neglect the second term due toH R1 (in this approximation R; is the distance to the
Earth's centre and H=R1 is in the order of 10 4):

V(N) V¢(N) 2GH ? (68)

Hence we get the approximation ofN N € (eq. 59) at the coordinates and to

2GH ?(; )
©; )
Thus, if we have a mathematical representation of the disturbing ptential T¢(h; ; ) and if we know

the topography, i.e. the height H(; ), we can calculate an approximationN$ (superscript \s" stands
for \spherical shell approximation") of the geoid height from eq. (55) and eq. (69) by

NG ) NEGs ) (69)

: S(. Y= NO(- 2GH 2(; )_ T°0;; ) 2GH ?(; )
NG ) NG )= NEG ) TR ) (70)
or, with N§ (eq. 56) instead ofN{ (eq. 55), by an approximation N'5:
: S(- Y= N[ - 2GH 2(; )_ TNfi; ) 2GH 2 )
NG ) NSG) = NEG ) TR 0 (71)

To calculate the geoid with high accuracy the use of a more sophistitad model for the potentials
of the topography V; and V;° then the simple spherical shell will be inevitable. However, as seendm
eq. (59), only the dierence between the potential of the topography and its downward contiruation
has to be approximated instead of the potential itself; thereforethe approximation in eq. (68) is more
realistic than the approximations for V; and V,° themselves.
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3.2 The Height Anomaly

The formulas to calculate the height anomaly from the geopotentialcan be derived similarly to those
for the geoid height in section 3.1. With a rst approximate value ; for and with

@Uu

Uty ) Ute ) ) gy
ht

(72)

(cf. eqg. 46) whereh; is the ellipsoidal height of the Earth's surface from eq. (12), we carwrite for the
di erence U(h; ) U(h¢ )atpoint (; ) the linearisation

@Uu

Uthe ) Uhe ) ( i) @h,

(73)

By replacing U (h; ) with W (h;) according to the de nition of the height anomaly in eq. (20), and
with egs. (47) it follows

W(hy) UChe ) (he ) ( i) (74)
resulting in a better approximation .; given by
1
i+ = it NCEED) Wi(hy)  U(he i) (75)

If we replace (h; i) by (hy), useW = U+ T (eq. 10) and the linearisation
Uthe i) Uh)+ (hy) (76)

we again, with the start value of o =0 for i =0, get Bruns' formula

T(h; ;)

G e

(77)

but evaluated here forh = h; instead of h = 0 in eq. (43). Consider eq. (19), from which follows:
TCCh;; )= T(h;; ); for h h;. The rst approximation g1 of the generalised height anomaly
g for arbitrary height h as de ned in eq. (25) is then:

ooy T(hy )
gl(h! ’ )_ (h, ) (78)
An additional approximation without using topography information, i.e. hy =0, gives:
T°(0; ;
aGi )= w0 )= NiG )= o) ©

which is sometimes called \pseudo-height anomaly" calculated on the Igpsoid and is identical with
Nf(; ), the approximation of the geoid height from eq. (55). Using egs. 17) and (79), the linearisation
@TF
T(h TO)+ hy —
(ht) (0) + h @h (80)
and (0) instead of (h) an approximation 7 for the height anomaly on the Earth's surface can also
be calculated by:

hh @F

a0 ) er(; )+ 0 @‘hzo

(81)
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which is useful for fast practical calculations (see section 5). Inte iteration of eq. (75) we (similarly to
egs. 40 and 41) can replace(h; i), the normal gravity at the Telluroid, by  (0), the normal gravity
at the ellipsoid, and expect that the convergence behaviour of thisteration will not change:

n ()= G )+%W(ht;; ) Ut ) (82)

In contrast to eq. (41) for the geoid height, where the value of tle normal potential at the ellipsoid
Up is the nominal value and the iteration searches for the heighth = N where the real potential has
the same valueW (N) = Up, here, in eq. (82), for the height anomaly, the valueW (h;) for the real
potential at the Earth's surface is the target value and the iteration searches for the heighh; where
the normal potential has the same valueU (h; ) = W(h;). In both cases one looks for the distance
of two points lying on the same normal plumbline and the normal poterial at one point must have the
same value as the real potential at the other point. But, for the geoid height N it is done near the
ellipsoid, and for the height anomaly it is done near the Earth's surface. However, the main part of the
di erence betweenN and does not come from the di erent ellipsoidal height where the two poentials
are compared, but from the fact, that for the geoid the real poential has to be evaluated inside the
masses for points over the continents (apart from some \exotic"regions) and on top (outside) of the
masses for the height anomaly.

Because of the mathematical similarity of the problems one can exp®, that the convergence behaviour
of the iteration in eq. (82) should be very similar to that of eq. (54) which is con rmed by the numerical
investigations in section (5).

3.3 The Dierence: Geoid Height - Height Anomaly

Now we can estimate the dierence between the geoid height and théweight anomaly. Considering
eq. (59) and taking N¢® Nf = ¢ from eq. (79) the dierence between the geoid height and the
pseudo-height anomaly (i.e. the height anomaly on the ellipsoid) is:
1
N(; ) (s ) W\A(N;; ) VE(N; ;) (83)

With the approximation of eq. (68) for Vi V® we get:

2G H ?(; )

© ) (84)

3.4 The Gravity Disturbance

If we have a mathematical representation of the potentialW (h; ; ), the calculation of g(h;; )isno
problem. Using arbitrary rectangular coordinates (u; v; w) (global cartesian or local moving trihedron)
the gradientsr W and r U of the gravity potential W and the normal potential U, i.e. the vectors of
the gravity and the normal gravity, at a given point ( h; ; ), are:

rwh;; ) = Wy(h;; e+ Wy(h; )&+ Wy(h; )ey (85)
ruch;; ) = Uu(h;; e+ Uh;; )a+ Uu(h; ) ey (86)

where W, , W,, W,,, Uy, Uy, Uy are the partial derivatives and g,, €,, &, are the unit vectors pointing
in the direction of u, v and w. Consequently the gravity disturbance can be calculated exactly fom
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eq. (27):

ghi s ) = Wuhis )2+ Wy(hi; ) P+ Wu(hi; )2

q (87)

2

Us(h; s ) 2+ Ug(hy; ) 2+ Ua(h;; )

One approximation possibility is to use the fact, that the directions of the real gravity vector r W and
the normal gravity vector r U nearly coincide. For this purpose we write eq. (27) in the form:

r w r U

g= Wi rw U ru (88)
with the scalar product notation of eq. (36). Approximating the dir ection ofr W by r U we get:
ru
— U 89
jr Uj ' (89)
and can use the disturbing potential T to write
ru@; ) @Th;; )
h; ; — = 1 T(h;; _— 90
g ) ey T ) ah (90)

and, if h < hy, for the harmonic downward continuation g°¢:

@F(h;; )
C h . 1
HUTIDIES (01)
The unit vector jrf Bj points in direction of the gradient of the normal potential, i.e. it is the normal

plumb line direction. Thus, g is also (at least approximately) the ellipsoidal normal component of he
gravity disturbance vector g (e.g. Hofmann-Wellenhof & Moritz, 2005).

An additional approximation is to take the direction of the radius of spherical coordinates ¢; ;' )
instead of the ellipsoidal normal and calculate g for h = 0, i.e. on the ellipsoid, using the downward
continuation T¢ of the disturbing potential:

g(;; ) 9sal(0;; )= @ (92)

3.5 The Gravity Anomaly
3.5.1 The Classical Gravity Anomaly

If we have a mathematical representation of the potentialW (h; ; ) the calculation of g (; ) from
eg. (30) is no problem, however, the geoid heighN has to be calculated beforehand. With eqgs. (85)
and (86) we get:

q
2 2 2
(s )= WEIN;; ) "+ WEN;; ) "+ WI(N; 5 )
(93)
q 2 2 2
Us(O;; ) "+ U(O;; )"+ Un(0;; )
But again an approximation of g in terms of the disturbing potential T is possible. With
@ Uj
r U r U(N N —— 94
©) (N) an (94)
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we get for eq. (30)
@ U()i
@h

With eq. (28) for the downward continuation of the gravity disturb ance toh = N and eq. (16) for the
normal gravity we can write it in the more usual form

Qi(; ) rWEN;; ) TrU(N; )+N (95)

h=0

: o(N- - @()
gCl( ) ) g (N! il )+ N @h o (96)
With the approximations (91) for g°¢ and (56) for N we get
, @F(h;; ) TSNS ) @()
G ) eh ., + 0 ) @h ., (97)

to calculate the classical gravity anomaly from the disturbing potertial. Without previous knowledge

of N, i.e. using eq. (55) instead of (56), we can approximate the classitgravity anomaly to:

@F(hi: ), T ) @()
@h ©; ) @h |5

If we again replace the ellipsoidal normal by the radial direction and gproximate additionally the
normal gravity by its spherical term

G (5 ) (98)

h=0

GM @() 2GM
20y ™ Tar B0

(G is the gravitational constant and M is the mass of the Earth) we get the spherical approximation
Osa Of the classical gravity anomaly to:

()

(99)

2
—T°0; ; )
r¢)
wherer = r( ) is the distance to the centre of the coordinate system (spheridacoordinate) of a point
on the ellipsoid.

@T

G5 ) Osal ; (100)

3.5.2 The Modern Gravity Anomaly

The calculation of g using eq. (31) at a given point (; ;
been calculated beforehand:

) is possible if the height anomaly has

g(h; ;
q

):

q

Wa(h; ;) 2+ Wo(h; s ) 2+ W(hi; )

2

(101)

Uy (h

)

2

+ Uy(h

2 2

)+ U(h b))

To calculate it in terms of the disturbing potential analogously to the classical gravity anomaly we get:

@()
h: - h:: )+ ; for h h 102
ghi; ) ghii ) oh . t (102)
Alike eq. (98) the approximation without knowledge of (i.e. =0)is:
@F(h;; ) T°O; 5 ) @()
h: + 103
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which is valid for arbitrary points outside the geoid becauseT ¢ has been used (remember thaT €= T
for h  hy). For h =0 eq. (103) is the same as eq. (98) for the classical gravity anoniy g, so the
spherical approximation using eg. (99) is the same too:

@F 2 1o0;5 ) (104)

a(; ) Osal; )= @, ()

3.5.3 The Topography-Reduced Gravity Anomaly

If we know the density (h; ; ) of the masses above the geoid and the height (; ) of the topography
above the geoid the calculation of the potentialV;(h; ; ) (and its derivatives) in egs. (33) and (34)
is in principle possible by numerical integration. But, however, it is extensive. Therefore, in the past,
without today's computer power, the question was: how can the peential V; of the topographical masses
be replaced by a rst approximation which results in a simple formula depending only on a constant
density and the heightH(; ) of the point where it should be calculated?

As a simple but useful approximation for the topography-reducedgravity anomaly, the Bouguer
anomaly gg has been introduced as:

ar(; ) gs(; )= rwWeN;; ) As r U@ ) (105)

where
As(; )=2GH (; ) (106)

is the attraction of the so called \Bouguer plate", which is a plate of thicknessH (topographical height
above geoid), constant density and in nite horizontal extent (e.g. Hofmann-Wellenhof & Moritz, 20 05).
With the classical gravity anomaly (eq. 30) we get:

e(: )= gl ) 2GH (; ) (107)

Unfortunately this cannot be expressed in terms of potentials beause the potential of an in nite plate
makes no sense (cf. the discussion in Varcek et al., 2001 and Vagek et al., 2004). The obvious idea
to use the potential of a spherical shell as in section 3.1 results in aoatribution of 4 GH which is
twice the \Bouguer plate"-attraction. The plausible explanation is t hat the contribution of the far zone
of the spherical shell, the whole opposite half sphere, cannot be gkected here (which makes this model
unrealistic), whereas in eq. (59), for thedi erence V;(N) V°(N) (which results in eq. 69), it can be
neglected.

To nd a simple approximation for V; which is consistent with the results for the \Bouguer plate"
one could de ne the potential of a spherical cap of constant thickessH, or a gaussian bell shaped
\mountain" with height H, and an extend which produce the attraction ofAg =2 G H

4 Calculation from Spherical Harmonics

4.1 Spherical Harmonics and the Gravity Field

The solid spherical harmonics are an orthogonal set of solutions ahe Laplace equation represented
in a system of spherical coordinates. (e.g. Hobson, 1931; Freadel985; Hofmann-Wellenhof & Moritz,
2005). Thus, each harmonic potential, i.e. such which ful Is Laplace'sequation, can be expanded into
solid spherical harmonics. For this reason the stationary part of he Earth's gravitational potential W,
(the attraction part only, see eq. 5) at any point (r; ;' ) on and above the Earth's surface is expressed
on a global scale conveniently by summing up over degree and ordef a spherical harmonic expansion.
The spherical harmonic (or Stokes') coe cients represent in the gectral domain the global structure
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and irregularities of the geopotential eld or, speaking more geneally, of the gravity eld of the Earth.
The equation relating the spatial and spectral domains of the geoptential is as follows:

S _GM‘XBXX R\ PAt W W i
Wa(r; ;' ) = — - Pm(sin') CJ, cosm + S, sinm (108)
=0 m=0
which shows the Er-behaviour forr !'1 | or written in the form
GM X=X R " _ .
Wa(r, ;' ) = = - P (sin') C¥ cosm + S¥ sinm
=0 m=0
which is sometimes useful in practice. The notations are:

r ;' - spherical geocentric coordinates of computation point
(radius, longitude, latitude)

R - reference radius

GM - product of gravitational constant and mass of the Earth

m - degree, order of spherical harmonic

P-m - fully normalised Lengendre functions

CW,sW . Stokes' coe cients (fully normalised)

The transformation formulas between ellipsoidal f; ; ) and spherical (; ;' ) coordinates can be found
e.g. in (Hofmann-Wellenhof & Moritz, 2005). A spherical harmonic agproximation of the gravity eld
up to a maximum degree’ max (a so-called \gravity eld model") consists of ( “max + 1) coe cients and
the 2 values forGM and R to which the coe cients relate. The reference radius R of the expansion
has only mathematical meaning. As can be seen from eq. (108), thgroduct C¥{ GM represents the
gravitational constant times the mass of the Earth associated wih the model. This means that C¥
scales the formal value ofGM which is given with the model. Usually C¥ is de ned to 1 to preserve
the meaning of GM which itself is not separated into its two single valuesG (gravitational constant)
and M (mass of the Earth) because it is known as product with a much higheaccuracy than the two
separate values. The degree 1 spherical harmonic coe cientsq)y ; C¥ ; SY¥) are related to the geocentre
coordinates and are zero if the coordinate systems' origin coincigewith the geocentre. The coe cients
CY¥ and SY{ are connected to the mean rotational pole position.

Thus, eq. (108) represents the Earth's gravity eld with an accuracy depending on the accuracy of
the coe cients ( C¥ ; SW ) and a spatial resolution depending on the maximum degreénmax . At a given
point in space the di erence of the real potential and the potential represented by the spherical harmonic
expansion in eq. (108) depends on both, the coe cient's accuracynd the maximum degree nax Of the
expansion.

Equation (108) contains the upward-continuation of the gravitational potential from the Earth's sur-
face forr > r po and re ects the attenuation of the signal with altitude through th e factor (R=r) . For
points lying inside the Earth the spherical harmonic expansion gives e harmonic downward contin-
uation Wy of the potential in a natural way simply by evaluating it for r <r po. However, possible
singularities of this downward continuation (see the remarks in subsction 2.1) would result in divergence
of the spherical harmonic series at the singular points fof nax ! 1 (cf. the discussion of this topic for
the Earth surface in Moritz, 1989). In practise "max iS hite and the series can be evaluated, in princi-
ple, also for points lying inside the Earth (r < r (). However, the harmonic downward continuation,
from its physical nature, is an unstable and ill-posed problem. That means the amplitudes of spatial
undulations of the potential are ampli ed with depth (up to in nity at  the locations of the singularities)
and the ampli cation is bigger the shorter the wavelength of the undulation is. Mathematically this
is obvious from the factor (R=r) in eq. (108) for decreasing radiug and increasing degree. Thus,
downward continuation in practise is always a (frequency-dependa) ampli cation of errors, i.e. in
case of spherical harmonic representation an-dependent ampli cation of the errors of the coe cients
cW.,sW.
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Note, that the spherical harmonics are calculated using sphericatoordinates, sorypo = rtopo ( ;' )
is the distance of the point on the topography (Earth's surface) fom the Earth's centre and ' is the
spherical latitude to be distinguished from the ellipsoidal latitude

Figure 4 presents examples for the three di erent kinds of spherial harmonicsP-;, (sin' ) cosm : (a)
zonal with 1 6 0;m =0, (b) tesseral with | 6 0;m 6 | 6 0 and (c) sectorial harmonics with * = m 6 0.

zonal: " =6, m=0 tesseral:> =16, m =9 sectorial: " =9, m=9

Figure 4. Examples for spherical harmonicsP-r, (sin' ) cosm [from 1 (blue) to +1 (violet) ]

Obviously, the attraction part U, of the normal potential U (see eq. 13), and thus the disturbing
potential T, according to eq. (10), can be expanded into spherical harmonic®o. If we denote the
coe cients which represent U, by CY ;SY  the coecients CT ;ST of the disturbing potential are
simply the di erences

ct.=cW cY and st.=sW sY (109)

The expansion of the ellipsoidal normal potential contains only terns for order m = O (rotational

symmetry) and degree’ = even (equatorial symmetry). Recall that S-.¢ don't exist, so SIm = S"‘,’n . To

calculate the normal potential in practise in most cases it is su cient to consider only the coe cients

C§h; C3h: Cip; C& and sometimesCy). The disturbing potential T in spherical harmonics is:

GM X R X . .
T Pm(sin') CI cosm + ST sinm (110)

*=0 m=0

for r Fropo. FOr I < T opo equation (110) givesTC, the harmonic downward continuation of T,
introduced in section (3.1).

Here, we implicitly postulated that CY , the coe cients of the attraction part of the normal potential,
and C¥ and SW , the coe cients of the real potential (or the potential of a mode | approximating the
real potential), are given with respect to the same values folGM and R. Usually this is not the case in
practise where the normal potential coe cients C\‘,Jn are given with respect to separately de ned values
GM VY and RY. From comparing the summands of the series separately, which mude equal due to
orthogonality, the relation between them is found to be:

C‘U = CU GM " E

n=Ch e R (111)

and must be considered in eq. (109).

Each representation of a function in spherical harmonics like eq. (@8) with an upper limit of sum-
mation “max < 1 corresponds to a low pass ltering, and™ nax correlates to the spatial resolution at
the Earth surface. A usual simple estimation of the smallest represntable feature of the gravity eld,
in other words, the shortest half-wavelength i, (as spherical distance), that can be resolved by the
(max +1)2 parametersCy, ; S is:

R

max

(112)

min (\ max )
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This estimation is based on the number of possible zeros along the eator.

At this point let us recall that the resolution of spherical harmonics is uniform on the sphere. This
follows from the known fact that under rotation, a spherical harmonic of degree’ is transformed into
a linear combination of spherical harmonics of the same degree. To ildrate it, imagine a single pulse
somewhere on the sphere represented (as narrow as possible)dpherical harmonics up to a maximum
degree and order qax . A rotation of the coordinate system will not change the shape of he pulse
which means uniform resolution. Hence, a better estimation of min ("max ) S€€Ms to be the following:
If we divide the surface of the sphere, i.e. R 2, into as many equiareal piecesAnin as the number of
spherical harmonic coe cients, i.e. (‘max + 1)?, then the size of each piece is:

. a 4R ?
Amin ("max ) = m (113)
The diameter of a spherical cap of this size is (in units of spherical diance):
min (" max ) = 4 arcsin (114)

max +1

which characterise the size of the smallest bump, half-wavelengttwhich can be produced by {imax + 1) ?
parameters. For some selected maximum degrees the resolutionseagiven in Table 1. To demonstrate

Table 1: Examples of spatial resolution of spherical harmonics in terms of th diameter ,;, of the
smallest representable shape (bump or hollow) after egs. (112) an(114)

Maximum | Number of Resolution in
Degree | Coe cients eg. (112) eq. (114)
" max N [degree] [km] [degree]| [km]

2 9 90.000| 10000.000| 77.885| 8653.876

5 36 || 36.000| 4000.000| 38.376| 4264.030

10 121 18.000| 2000.000( 20.864| 2318.182

15 256 || 12.000| 1333.333| 14.333| 1592.587

30 961 6.000 666.667 7.394| 821.587

36 1369 5.000 555.556 6.195| 688.321

40 1681 4.500 500.000 5.500| 621.154

45 2116 4.000 444.444 4.983| 553.626

50 2601 3.600 400.000 4.494 | 499.342

75 5776 2.400 266.667 3.016| 335.073

180 32761 1.000 111.111 1.266| 140.690

360 130321 0.500 55.556 0.635 70.540

500 251001 0.360 40.000 0.457 50.828
1000 1002001 0.180 20.000 0.229 25.439
2000 4004001 0.090 10.000 0.115 12.726
5000 25010001 0.036 4.000 0.046 5.092
10000 100020001 0.018 2.000 0.023 2.546

how the resolution of spherical harmonics depends on the maximumaelfree naox of the development
the following synthetic example has been constructed: A (1 1 )-grid where all elements are zero
except for two with the values 1 has been converted into sphericaharmonic coe cients up to degree
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Figure 5: Cross-sections through 2 peaks, which are originally 6apart, after approximation by
spherical harmonics of di erent maximum degrees max

and order "nax = 90 using the numerical integration described in (Sneeuw, 1994). e two peaks are
6 (spherical distance) apart from each other. The cross-sectianthrough the two peaks for di erent

maximum degrees max are shown in Figure (5). From Table (1) (eq. 114) one expects tha maximum

degree of max 36 su ces to resolve the peaks but the result of this example is thata slightly higher

maximum degree of max 41 is necessary.

4.2 The Geoid

To calculate the geoid undulation from eq. (70) or eq. (71) besidedhte potentialsW andU,orT = W U,
a representation of the topographyH ( ;' ) must be available too. Usually the topography models are
given as grids on the reference ellipsoid and have a much higher restbn (e.g. 1° 19 than the
recent global gravity eld models. To avoid adding parts of di erent resolution in egs. (70) or (71),
the topography model can also be transformed into a surface sghical harmonics expansion (a good
summary for this technique can be found in Sneeuw, 1994):

Hax X

H(;' )= R P (sin') C°°cosm + S'%°sinm (115)
'=0 m=0

where C'%° and S°°" are the coe cients of the expansion which are usually scaled by the eference
radius R. Using the same upper limit " nhax Of the expansion, the geoid heightN can be approximated
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according to eq. (70) by:

GM X R X _ _
NI(;' )= PR . Pm(sin') CT cosm + ST sinm
e e “=0 e m=0
oy ., (116)
2G o . .
T R Pm(sin') C°%° cosm + S!%°sinm
e *=0 m=0
or according to eq. (71) by:
GM X R X . .
N3(;" )= R - Pm(sin') CT cosm + ST sinm
& /2 m=0
o ., (117)
2 o . .
(rG_, ) R Pm(sin') C%° cosm + SP%°sinm
& *=0 m=0

The radius-coordinate of the calculation point for the normal gravity is set to the latitude dependent
radius-coordinate re = re(' ) of points on the ellipsoid, and for the disturbing potential it is set to
r=re(" ) as well if eq. (70) is used, or tor = r (;' ) if eq. (71) is used, whereas in the latter case an
approximation for ¢ = ¢(;' ) has to be calculated in a prior step using eq. (118).

4.3 The Height Anomaly

The calculation of the height anomalies ('; ) from spherical harmonic potential models according to
the iteration (eq. 82) is possible using eqgs. (4), (5) and (108). Usip the coe cients of the disturbing

potential (egs. 109, 110 and 111) the calculation according to eq77) or (79) is simple. Without using
a topography model they can be calculated from eq. (79) by

oM S B 5
re (re;') .

er(;' )=

. Pom(sin') CT cosm + ST sinm (118)
e

=0 m=0

and the radius-coordinater( ;' ) of the calculation point is be set tore = re(* ). With eq. (81) they
can be calculated more accurately by

~- ,HG )+NG ) @F
1— el o Ay
;") @r .,

(119)

which can be calculated from spherical harmonics if we use eq. (11%r H and eq. (116) or (117) for
N, and egs. (92) and (125) for the radial derivative ofT°.
4.4 The Gravity Disturbance

To calculate the gravity disturbance from eq. (87) the gradientsr W from eq. (85) andr U from
eg. (86) have to be calculated from spherical harmonics. The grdadnt r W in spherical coordinates is
(e.g. Bronshtein et al., 2004):

rw=W,e +

1
We+ -W e (120)
r cos r
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whereW, ;W ;W. are the partial derivatives and &, € , € are the unit vectors pointing in the direction

ofr, and' respectively. Consequently forjr Wj, considering the centrifugal potential (egs. 4 and
5), we have:
) 1 | 2
PW = Wat I+ —(Wa + ) + “(Wa + ) (121)
The derivatives of eq. (108) in spherical harmonics are:
GM X R X . .
Wa = —— — (+1) Pp(sin') c¥ cosm + S sinm
r =0 r m=0
GM X R X _ .
W, = — — mPm(sin') Sy cosm  CW sinm (122)
r "=0 r m=0
M X R X @B, (sin' .
Wy = M — M C¥ cosm + S¥ sinm
r "=0 r m=0 @
The centrifugal potential (eq. 4) in spherical coordinates is
1
= 5! 2r2(cos' )? (123)
and its derivatives are:
r = 12r (cos' )? ; =0 ; = 12%2cos sin' (124)

hencejr Wj can be calculated from eq. (121) with egs. (122) and (124).

The same formulas hold for calculatingjr Uj by replacing W by U and C¥ , SW py CY , SY | thus
the gravity disturbance g outside the masses or its downward continuationg ¢ can be calculated exactly
for arbitrary points (r; ;' ) in space from the spherical harmonic coe cients of a given gravity eld
model.

The spherical approximation gs, of the gravity disturbance (eq. 92), i.e. the (negative) radial deliva-
tive of the disturbing potential T, calculated from a spherical harmonic expansion of is:

, GM X>* R X
9sa(ri 3" )= —5- + (+1
=0 m=0

Pm(sin') CI cosm + ST sinm (125)

4.5 The Gravity Anomaly

Similar to the gravity disturbance g, equations (121) to (124) can be used to calculate the gravity
anomaly g exactly from spherical harmonics from eq. (101) (or from eq. (9Bfor the classical gq).

The spherical approximation gsa (eq. 104) calculated from a spherical harmonic expansion of the
disturbing potential T is:

, GM X R X
Gsa(l; ;' ) = ~z I ¢ 1
"=0 m=0

Pm(sin') CI cosm + ST sinm (126)

Nowadays this formula, as well as the spherical approximation of tle gravity disturbance (eq. 125), is
not accurate enough for most practical applications. Neverthelss the degree-dependent factors (+ 1

for gsa and ™ 1 for gsa) give theoretical insight into the di erent spectral behaviour and are useful
for simulation studies.
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5 Practical calculations using the model EIGEN-6C2

The recent gravity eld model EIGEN-6C2 (Ferste et al., 2012) and the topography model ETOPO1
(Ice Surface) (Amante & Eakins, 2009) have been used to calculatthe described functionals and their
approximations on global grids. The resolution of the gridsis @1  0:1 and the model EIGEN-6C2 has
been evaluated up to its maximum degree of nax = 1949. All calculations are carried out with respect
to the reference system WGS84. The di erences between sevérapproximations of one and the same
functional are presented.

The topography model is necessary for two di erent purposes: §) to calculate the exact coordinates
on the Earth's surface for the height anomalies on the Earth's surdice, the gravity disturbances and the
modern gravity anomalies, and (b) to calculate the geoid undulationsfrom pseudo height anomalies on
the ellipsoid considering the topographical e ect. For (a) bi-linear interpolation of the original ETOPO1-
Ice Surface-grid is used to calculate the positions as accurately gmssible. For (b) the gridded values
of the original topography model has been transformed into a (stface-) spherical harmonic expansion
using the formulas described by Sneeuw (1994). The maximum degeeof EIGEN-6C2 is " max = 1949,
so the topography has been used with the same resolution.

5.1 Geoid and Height Anomaly

The convergence of the iterative calculation of the \downward cotinued" geoid height N¢(; ) from
WE(; ) and Uy using eq. (54) with Nf from eq. (55) or (79) as start value is very fast. For the
calculation using spherical harmonics eqgs. (108) and (118) are uddor W€ and N{ respectively. With a
64-bit accuracy (real*8 in Fortran, which are about 16 decimal digits) convergence is reached after 2 or 3
steps (step 1 is fromN{ to N5 in our terminology). The spatial distribution of the accuracy of the start
value N7 from eq. (55) and the rst iteration N5 of eq. (54) are demonstrated by gures (6) and (7).
Figure (8) shows the accuracy of the (non-iterative) approximaion N§ of eq. (56). Thus, to calculate
the real geoid heightN from the \downward continued" geoid height N ¢ by adding the in uence of the
topography (see eq. 60) the calculation o ¢ has to be carried out with the required accuracy. However,
as mentioned in section (3.1), the in uence of the topographic masss are the accuracy limiting factor.

If we start the iterative calculation of the height anomalies (h¢; ; ) (eq. 82) with the pseudo height
anomaly on the ellipsoid ¢; according to egs. (79) and (118) the mean di erence between staval-
ues and convergence is about 35 times bigger than for the iterativealculation of N ¢ using eq. (54).
Nevertheless the iteration converges after 3 or 4 steps. The dieences between the start values ¢;
and the convergence are shown in gure (9) and the accuracy of the rst iteration ; is shown in
gure (10). Figure (11) shows the accuracy of the (non-iterative) approximation 7 of egs. (81) and
(119). Usually the chosen calculation formula or algorithm will be a conpromise between computing
e ort and accuracy requirement.

Figure (12) shows the di erences between the height anomalies orhe ellipsoid from egs. (79) and (118)
and the geoid heights from egs. (71) and (117) (calculated using # spherical shell approximation for
the topography). The maximum exceeds 4 metres. Thus, to calcule geoid undulations in continental
areas, the potential of the topographic masses must be approxiated somehow at the geoid inside the
masses. The dierence between the potential of the topographianasses and its harmonic downward
continuation, both evaluated on the geoid, cannot be neglected.

The weighted means, the minima and the maxima of the grid di erencesshown in gures (6) to (12)
are summarised in table (2).

5.2 Gravity Disturbance and Gravity Anomaly

Figure 13 shows the dierences ( g @) between the classically de ned and the modern (Molodensky's
theory) gravity anomalies. They range from 191 to +306 mgal. Therefore, when using gravity anomaly
data sets which are derived from real measurements it is importanto know how they are reduced.
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Table 2: Dierences between varying approximation levels of height anomaliesand geoid undulations

Di erences wrms min max
[m] [m] [m] [m]
Nf N°¢ |1510°3| 19 102 |49 10?2
NS N¢ | 22 107 28 10°|1.2 10°
N N¢ | 24 10 * 1.8 10 | 5.3 10 °

el 5.2 10 2 78 101 | 34
2 6.7 10 ° 99 10 4| 6.1 10 8
1 1.2 10 ? 98 10 ' |61 101?
el NS | 25 101 0.0 4.79

The dierences (gsa @) between spherically approximated and exactly calculated gravity dstur-
bances are nearly the same as (gsa 0), the di erences between spherically approximated and exact
modern (Molodensky's theory) gravity anomalies. The di erences ( gsa g) are shown in gure 14.
They range from 189 to +302 mgal. To compare or combine gravity anomalies or gravitydisturbances
derived from terrestrial measurements with those derived from gavity eld models in spherical harmonic
representation the spherical approximation is obviously not accuate enough.

To understand the big di erences between the modern gravity anenalies and the classical gravity
anomalies (or the spherical approximation) in the high mountains we lave to consider the e ect of
downward continuation of the short wavelengths. The wavelengthdependent downward (or upward)
continuation is described by the term (R=r) in equation (126). Assuming a topography of 7 km, the
shortest wavelengths, which correspond in our calculations t6 = 1949 , will be “ampli ed' by a factor
of (6378=6371)!°*9 = 8:5 from top to bottom.

The dierences ( gsa 0o ) between spherically approximated and classical gravity anomalies ra
smaller, they range from 4:73 to +4:24 mgal and are shown in gure 15. Hence, to calculate classical
gravity anomalies the spherical approximation can be used if the highst accuracy is not required.

The weighted means, the minima and the maxima of the grid di erencesshown in gures (13) to (15)
are summarised in table (3).

Table 3: Dierences between the gravity anomalies, the classical gravity anmalies and the gravity
anomalies in spherical approximation

Di erences wrms min max
[mgal] [mgal] | [mgal] | [mgal]
el g 4:42 191 306
Osa g 4:39 189 302
Osa Jel 0:14 473 | 424
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-0.005 -0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005

Figure 6: The di erence between the start value N7 and the convergenceN ¢ of eq. (54):
(Nf N°;wrms=1:5 10 *m, min= 0:019 m, max=0:049 m

4 I I I I I I I I I | 2
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Figure 7: The di erence between the rst iteration N3 and the convergence of eq. (54):
(NS N°;wrms=2:2 10 “m, min= 28 10 °m, max=1:2 10 °m
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Figure 8: The di erence between the approximation in eq. (56) and the convegence of eq. (54):
(NS N°;wrms=2:4 10 *m, min= 1:8 10 *m, max=5:3 10 °m

4 I I I I I I I I I >

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16 0.20

Figure 9: The di erence between the pseudo height anomalies on the ellipsoid @hthe height
anomalies on the Earth's surface: (e1 ); wrms=0:052 m, min=0:78 m,
max=3:4 m
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Figure 10: The di erences between the rst iteration , and the convergence of eq. (82):
(2 )wms=6:7 10°m, mn= 99 10 *m, max=6:1 10 ®m

4 >

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

Figure 11: The di erence between the approximation 7 of eq. (81) and the convergence of
eq. (82): (1 ); wrms=0:012 m, min=0:98 m, max=0:61 m
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Figure 12: The di erence between pseudo height anomalies on the ellipsoid of e§118) and
geoid undulations from eq. (117): (e1  N3); wrms=0:25 m, min=0:0 m,
max=4:79 m

-3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 18 2.4 3.0

Figure 13: The di erence between classical and modern (Molodensky's theofygravity
anomalies: (' gq 0); wrms = 4:42 mgal, min= 191 mgal, max= 306 mgal
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-3.0 -2.4 -1.8 -1.2 -0.6 0.0 0.6 1.2 1.8 2.4 3.0

Figure 14: The dierence ( Gsa g) between spherical approximated gravity anomalies and
modern (Molodensky's theory) gravity anomalies; wrms = 4:39 mgal,
min= 189 mgal, max= 302 mgal

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Figure 15: The dierence ( gsa 0o ) between spherical approximated and classical gravity
anomalies; wrms =014 mgal, min= 4:73 mgal, max = 4:24 mgal
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