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Abstract. We have analyzed recent GRACE RL04 monthly gravity so-

lutions, using a new decorrelating post-processing approach. We find very

good agreement with mass anomalies derived from a global hydrological model

(WGHM). The post-processed GRACE solutions exhibit only little ampli-

tude damping and an almost negligeable phase shift and period distortion

for relevant hydrological basins. Furthermore, these post-processed GRACE

solutions have been inspected in terms of data fit with respect to the orig-

inal inter-satellite ranging and to SLR and GPS observations. This kind of

comparison is new. We find variations of the data fit due to solution post-

processing only within very narrow limits. This confirms our suspicion that

GRACE data does not firmly ’pinpoint’ the standard unconstrained solu-

tions. Regarding the original Kusche (2007) decorrelation and smoothing method,

a simplified (order-convolution) approach has been developed. This simpli-

fied approach allows to realize a higher resolution – as necessary e.g. for gen-

erating computed GRACE observations – and needs far less coefficients to

be stored.
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1. Introduction

Using data provided by the Gravity Recovery and Climate Experiment (GRACE) twin-

satellite mission (Tapley et al., 2004b), scientists from various diciplines have been able,

for the first time, to observe directly the redistribution of mass in the world’s ocean (e.g.

Chambers et al., 2004), the mass balance of the Greenland and Antarctica ice sheets (e.g.

Velicogna and Wahr, 2004), water stock changes in the Amazon and many other areas

(e.g. Schmidt et al., 2006), and the co- and post-seismic gravity effect associated with

large seismic events such as the December 2004 Sumatra-Andaman Earthquake (Han and

Simons, 2008).

However, one significant problem that users of monthly GRACE gravity field solutions

face is the presence of correlated and resolution-dependent noise in the provided spheri-

cal harmonic coefficients. Simply truncating the spherical harmonic series at low degrees

(long wavelengths), where the noise is not yet significant, causes the loss of an unaccept-

ably large portion of the signal. This is not an option when one is interested in signals

of geographical extension of a few hundred kilometers, such as in the case of e.g. smaller

ocean basins (Fenoglio-Marc et al., 2006, Swenson and Wahr, 2007) or geodynamic phe-

nomena (Han and Simons, 2008). The noise is not white on the sphere, and its realization

is usually described as ’striping’ patterns. The reason for this peculiar characteristics

is GRACE’s mission geometry in connection with potential limitations in current anal-

ysis strategies. The GRACE A and B twin-satellites fly in a single orbital plane, and

the inter-satellite ranging observable used in gravity modelling translates into a distinct

along-track sensitivity. Deficiencies in de-aliasing background models and other errors
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and mismodelling then yield an anisotropic error pattern.

Gaussian smoothing (convolution against an isotropic Gaussian smoothing kernel) has

been the standard method in the early exploitation of GRACE products, due to its ease

in implementation and intuitive interpretation (Wahr et al., 1998). However, more re-

cent works tend to apply probabilistic decorrelation methods in the post-processing of

GRACE solutions, usually in conjunction with an additional smoothing. The idea behind

the decorrelation is to identify and remove error correlation in the sets of spherical har-

monic coefficients (i.e. between different coefficients), either based on empirical analysis of

the coefficients (Swenson and Wahr 2006, Wouters and Schrama, 2007) or using an a pri-

ori synthetic model of the observation geometry (Kusche 2007, Klees et al., 2008). As a

consequence the resulting decorrelating kernels, unlike the original Gaussian or some mod-

ified versions of it, are not axisymmetric (isotropic); they rather tend to exhibit negative

sidelobes in North-South direction, and their overall shape depends on the geographical

position. We believe that this kind of investigation will continue for the near future, unless

the quality of the GRACE gravity models experiences a quantum leap rather than steady

progress, which is not foreseeable at the moment.

The objectives of the present paper are as follows. First, we simplify and extend the

Kusche (2007) decorrelation method to facilitate its usage by a wider community of

users of GRACE-derived products. Second, we decorrelate the GFZ GRACE RL04 se-

ries (Flechtner, 2007, Schmidt et al., 2008b) of monthly gravity field solutions. Finally,

these decorrelated solutions are evaluated and compared to predictions from a hydrologi-

cal model.
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The Kusche (2007) method was originally based on computing and applying a filter ma-

trix with as many rows and columns as there are spherical harmonic coefficients. Now we

simplify it to an order-only convolution method (comparable to the approach in Swenson

and Wahr (2006)) which still closely complies with the original, statistically optimal, full-

matrix method. These order convolution filter coefficients are provided to the scientific

community for three different degrees of smoothness. In this manuscript we first briefly re-

cap the decorrelation method of Kusche (2007) and then develop our simplified/extended

version of it. These two approaches are compared in terms of complexity as well as in

terms of absolute and relative differences of the filter coefficients. Then, we compare our

decorrelated GFZ GRACE RL04 solutions first in terms of fit to the original K-band data

and to SLR and GPS phase and code observations in the orbit recovery process. Further-

more, we investigate the stability of amplitudes, phases and periods of leading Empirical

Orthogonal Functions (EOF’s) for selected water catchment areas. Finally, we perform a

global comparison with independent hydrological modelling.

2. Filter Method and Data

2.1. Approach

The unphysical striping error pattern, seen in typical monthly solutions of the GRACE

project when geoid or surface mass anomaly maps are constructed, can be understood

as an individual realization of a noise process with a spatially distinct correlation. This

noise process affects predominantly the higher spherical harmonic degrees. Unlike deter-

ministic smoothing kernels, probabilistic methods deal with this situation in a natural and

optimal way when a priori signal and error covariance operators can be specified. This
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is applied in the methods of Swenson and Wahr (2006), Kusche (2007), and Wouters and

Schrama (2007). These methods differ only in the way how these covariance operators

are constructed. Moreover, despite striving for optimality under specified signal and error

metrics, these methods are usually being relaxed in the sense that additional smoothing

is enabled through a continuous tuning parameter. In the case of Swenson and Wahr

(2006), Gaussian smoothing is applied after decorrelation (where the covariance is con-

structed from an empirical inspection of the coefficients), and the degree of smoothing is

further controlled by parameters that tune the polynomial covariance fit. Kusche (2007)

applied a common concept from inverse theory: penalized weighted inversion, where the

penalty (or regularization) parameter controls the desired degree of smoothness for the

geoid or surface mass anomaly solution. Wouters and Schrama (2007) first apply empir-

ical orthogonal function (EOF) analysis to the GRACE coefficients. Therafter, based on

applying the Kolmogorov-Smirnov test to the principal components, signal and noise co-

variance are empirically separated and the smoothed and decorrelated signal is obtained

from a partial reconstruction. Other authors (e.g. Davis et al., 2008) apply a simple

trend/trigonometric polynomial models for each individual coefficient to this end.

In the Kusche (2007) method, the GRACE error covariance matrix used in the construc-

tion of the decorrelating kernel is created synthetically, using one month of GRACE twin-

spacecraft orbits and a simplified method for mapping the K-band inter-satellite ranging

observations into the spherical harmonics. This matrix models the resulting correlations

between GRACE spherical harmonic coefficients quite well, and we found no need to re-

place it with a more realistic formal or calibrated GRACE error covariance from the level

D R A F T February 7, 2009, 9:45pm D R A F T



KUSCHE ET AL.: DECORRELATED GRACE SOLUTIONS BY GFZ X - 7

2 processing. On the contrary, experiments indicated that the resulting kernels would ex-

hibit a more complicated structure (e.g. more sidelobes, as expected) without providing

any real advantages. The disadvantage of the Kusche (2007) method lies in the fact that

a fully populated filter matrix is built: every filtered coefficient is computed as a weighted

average of all nK coefficients (cf. Eq. (4)). Swenson and Wahr (2006), on the other hand,

derived their method as an order-convolution filter, i.e. a filtered spherical harmonic coef-

ficient is constructed using only the coefficients of the same harmonic order and over the

same parity. Why this is effective is not surprising: from its observing geometry, it is clear

that GRACE (at least for good periods without larger data gaps) comes close to fulfilling

certain sampling conditions (Colombo, 1986), for which the normal matrix would attain

a special, block-diagonal structure.

2.2. Order convolution coefficients

In the Kusche (2007) method with smoothing parameter a, each spherical harmonic

coefficient (σlmq = cσ
lm for q = 0 and σlmq = sσ

lm for q = 1) of the surface mass anomaly

σ(λ, θ) (or any other functional of gravity change) is decorrelated and smoothed in the

following way

σfilt

lmq =
lmax
∑

l′=lmin

l′
∑

m′=0

1
∑

q′=0

wl′m′q′

lmq (a) σl′m′q′ (1)

Here l and m are harmonic degree and order, and the surface mass anomaly coefficients

follow from published GRACE geopotential coefficients xlmq (Wahr et al., 1998)

σlmq =
2ρe

3ρw(1 + k′

l)
(l +

1

2
)δxlmq , (2)
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where ρe and ρw are average (reference) densities of Earth and sea-water, k′

l is the load Love

number of degree l, δxlmq = xlmq−x̄lmq, and x̄lmq is a long-time average of the geopotential

coefficient. lmin and lmax are the minimum and maximum spherical harmonic degrees

(usually lmin = 2 and lmax = 40 . . . 120). wl′m′q′

lmq (a) is the matrix of decorrelation coefficients,

with a continuous non-negative parameter a that controls the degree of smoothness. The

reason for using a dense matrix, i.e. each coefficient σfilt

lmq following from a weighted mean

of all other coefficients, is that the error covariance matrix E and the signal covariance

matrix S will in general be given as dense matrices. Then, it follows straightforward from

probabilistic inverse principles that

Wa = (E−1+ aS−1)−1E−1 =
(

I + (a−a′)Wa′ES−1
)

Wa′ , (3)

see Kusche (2007). There, it was also shown that this filter is equivalent to the common

(quadratic) constraining of the GRACE solutions, if E−1 equals the GRACE normal

equations matrix and S−1 equals the regularization matrix. Gaussian and other commonly

used noise suppression methods employ a diagonal matrix, hence they cannot decorrelate

the coefficients. The downside of the full-matrix approach is that the number of filter

coefficients nK is quite large,

nK =
(

(lmax + 1)2 − l2min

)2

. (4)

Table 1 provides an overview of the smoothing properties of the three filter versions (de-

noted by DDK1, DDK2, DDK3) that we evaluate in this paper, in terms of the smoothing

radius of an approximately equivalent Gaussian filter. However, there are different possi-

bilities to define a correspondence between an anisotropic filters (which possess negative

sidelobes in our case) and an isotropic all-positive Gaussian. We provide two of them: 1)
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based upon the assessment in Kusche (2007) which defines the spectral variance of the

squared isotropic and anisotropic function thought as a probability distribution on the

sphere, and 2) based on comparing the ’isotropic part’ of the anisotropic decorrelation

filter with the Gaussian in terms of matching the particular spectral degree where the

filter weight drops to 0.5, i.e. by defining

ωl =







∑l
m=0

∑1
q=0

(

wlmq
lmq(a)

)2

2l + 1







1

2

. (5)

In fact, Gaussian radii based on 1) and 2) differ significantly (cf. table 1). This is not

surprising since method 2) completely disregards the anisotropic structure of the filter

kernel, whereas in method 1) negative sidelobes map into positive ones and in this way

artificially increase the variance.

Swenson and Wahr (2006) noted several approximate symmetry properties, including a

strong correlation between even and odd parity as a function of degree, from empirical

inspection of the correlations of the GRACE coefficients. We translate them here to the

filter coefficients,

|wl′m′1
lm0 (a)| ≪ 1

|wl′m′0
lm1 (a)| ≪ 1

|wl′m′q′

lmq (a)| ≪ 1 for m 6= m′ (6)

|wl′m′q′

lmq (a)| ≪ 1 for l even and l′ odd

|wl′m′q′

lmq (a)| ≪ 1 for l odd and l′ even .

The reason for these symmetries is the dense, almost regular distribution of the satellite

measurements along a near-circular, near-repeat orbit of almost constant inclination and
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of sufficient number of orbital revolutions. Colombo (1986) showed that under such condi-

tions the spectrum of the design matrix columns will be clustered at only few lines, and two

columns will share common lines only for common harmonic order, same parity of degree,

and for cos/cos and sin/sin combinations. Note that the spectral convolution coefficients

themselves are not necessarily symmetric in the Kusche (2007) method, wl′m′q′

lmq 6= wlmq
l′m′q′ ,

but they retain the general properties of the normal matrix since the signal covariance

matrix was chosen as diagonal. In addition, from the mentioned conditions one readily

derives

|wl′m′0
lm0 (a) − wl′m′1

lm1 (a)| ≪ 1 (7)

i.e. clm and slm-coefficients are filtered in the same way. We have investigated in table

2 (ESM) the maximum size of neglected coefficients, when assuming that Eq. (6) and

Eq. (7) would be perfectly fulfilled (i.e. by replacing the left-hand side by zeroes). This

comes down to a maximum contribution of 0.035 from mixed-parity coefficient pairs, and

of up to 0.012 considering only the block-diagonality (i.e. by retaining only coefficients

of the same order m). Admitting that the considered filters were based on the GRACE

orbital geometry for August 2003, a month with a good spatial coverage of observations,

we conclude that it appears perfectly justified to work with the block-diagonal filter as an

approximation to the statistically optimal method (where optimality depends on a priori

assumptions which can be challenged to some extent). A visual representation of the kernel

cross-sections in North-South and East-West directions would be hard to distinguish from

the figures 2-5 in Kusche (2007), derived from the optimal filter. Therefore, we omit such

figures here. During the review phase of this paper, Klees et al. (2008) published an
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extended set of experiments where both covariance matrices E and S are varied.

Assuming the above conditions (6) as exactly fulfilled, as inferred from Swenson and Wahr

(2006), the decorrelation method can be written as

σfilt

lmq =
lmax
∑

l′=lmin;l′∈parity(l)

w(l, l′, m, a)σl′mq , (8)

where l′ ∈ parity(l) means that we consider only those l′ in order to form the sum which

are of the same parity (both even or both odd) as l. The number of coefficients is now

reduced from nK to

nk =
1

2
(lmin + 1)(∆l + 1)2 +

∆l

12
(∆l + 1)(2∆l + 1)

+
1

4
(∆l + 1) (9)

+

{

1 if parity(∆l)=even

0 if parity(∆l)=odd

}

×
(2lmin + 1)

4
,

where

∆l = lmax − lmin . (10)

For example, for lmin = 2 and lmax = 70 this gives nK = 50372 ≈ 2.5 · 107, whereas we

have nk = 60727 ≈ 6.1 · 104, which means that a compression factor nk/nK of 0.0024 is

achieved.

In addition, a threshold ε can be introduced to suppress coefficients of negligible magni-

tude. In table 3 (ESM), we show possible compression factors (number of retained/original

coefficients) for two threshold values and with respect to the original full matrix and to

the block-diagonal filter matrix. However, in the latter case the advantage of threshold-

ing depends on the smoothing effect of the filter and it certainly does not yield a very

significant improvement. Consequently, we stick to the block-diagonal approach.
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Figure 1 shows the filter coefficients w(l, l′, m, a) in logarithmic colorscale, row-wise for

three different degrees a of smoothing (DDK1, DDK2, DDK3), column-wise for a selected

number of harmonic orders m, and with l, l′ on the horizontal/vertical axis of each sin-

gle matrix plot for fixed m, a. Matrices in the figure are arranged for transforming a

vector of coefficients with the minimum degree on top. Here lmax was set to 70. Notice-

able are strong negative weights that couple (near-) sectorial GRACE coefficients with

higher-degree filtered GRACE tesseral coefficients, and that are not at all mirrored by

a symmetry property in the filter matrices. Our original intention was to fit analytical

surfaces to the filter coefficients, i.e. to express the w(l, l′, m, a) as an analytic function of

the variables l, l′, m and a. This, however, turned out as difficult using standard methods

such as low-degree polynomials, as the w(l, l′, m, a) do not behave in a rather ’regular’

way (cf. Fig. 1). Therefore, instead of maintaining a large number of such expansion

coefficients, we chose to simply store the original w(l, l′, m, a) in tables. These can be

obtained on request (roelof@gfz-potsdam.de).

2.3. Data

The data for this study include 58 GFZ RL04 GRACE monthly solutions (Flechtner

2007), covering the time period 09/2002-08/2007 (missing months are 12/2002, 01/2003,

06/2003, 01/2004). In the processing of these solutions, the contributions of atmospheric

and oceanic pressure variations, including ocean tides, were removed by applying back-

ground models. As a consequence, the monthly gravity fields represent mainly the direct

and indirect (through loading) effect of land hydrologic variations such as large-scale

groundwater and surface water level change. We define temporal variations δxlmq by
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removing the long-term average x̄lmq of these fields. For the further investigations, two

versions of these coefficient sets are generated. One set is expanded up to degree and order

70 and is then decorrelated using both the full matrix approach (Eq. (1)) and the order-

convolution, block-diagonal approach. These coefficients are then synthesized to create

models of surface mass variations (Eq. (2)) on a global grid. A second set of coefficients,

to be used for the orbital tests, is decorrelated to obtain δxfilt

lmq up to degree and order

120. To these high-resolution filtered geopotential coefficients, the long-term average has

been added back to allow for the orbit recovery based upon GRACE L1B data. This

second set of coefficients is necessary to avoid aliasing signals that would map into the

data residuals, as the L1B data (in particular the K-band) contains gravity information

for degrees much beyond degree 70 (e.g., Gunter et al., 2006).

To this end, a degree/order 120 version of the DDK filters has been created. We have

built a synthetic GRACE error covariance matrix as in Kusche (2007), i.e. using the

GRACE twin-satellite orbital pattern of August 2003, but computing only the block-

diagonal part. Then, employing the same power-law signal covariance model derived from

models of ocean and land mass change, we built the optimal filter. Compared to the

original approach using dense matrices, this technique results in a slightly different block-

diagonal filter. The differences shown in table 4 (ESM) are sufficiently small, however.

For validation of our GRACE results we used a global land hydrology model: the Water

Gap Hydrology Model (Döll et al, 2003). Original data is provided as the total monthly

average water storage in mm units on a global 0.5◦×0.5◦ grid, which we subsequently ex-

pand into spherical harmonics and refer to the long-term mean calculated in the same way
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as we do with GRACE data. Expansion into spherical harmonic coefficients is performed

by numerical integration. These coefficients are then converted to gravity potential coeffi-

cients by using the relation inverse to Eq. (2), and represented in the same form and units

as the GRACE coefficients. The spherical harmonic sets can then be filtered by applying

exactly the same mathematical operations as with GRACE data. The resulting sets can

then be either mapped back into spatial grids or used to form basin averages.

3. Comparisons in terms of geopotential and surface mass changes

3.1. Fits at the GRACE observation level

Monthly GRACE gravity models are the outcome of a complex data reduction process,

the current state of which is described e.g. in Flechtner (2007). An essential element of

this process is a weighted least squares inversion, taking GRACE L1B data – inter-satellite

K-band range rate (KRR) data, GPS code and phase tracking observations obtained from

the two individual spacecraft – as input. The processing starts with an iterative precise

orbit determination (POD) for the two spacecraft, relying on an a priori gravity model.

KRR data is downweighted in the POD phase. The monthly spherical harmonic solutions

provided to the public then follow from the last iteration of this process with reinstated

KRR weighting. They are usually – apart from exceptional cases of data gaps and sparse

coverage due to repeat orbital periods – unconstrained. This means that they, when used

for generating synthetic GRACE observations, fit the true GRACE data in an optimal

sense. Any constraining of the solution, be it by spectral truncation, direct regularization

of the normal equation systems, or post-processing smoothing, is therefore expected to

worsen this fit to some extent. The question that we investigate here is, whether our
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decorrelated and smoothed gravity solutions (δxfilt

lmq, of which only the time-variable part

was postprocessed through the DDK filters) deteriorate the data fit significantly when

compared to the least squares solution. Surprisingly, this kind of test appears to be per-

formed for the first time here. We believe that the outcome of this evaluation helps to

decide to what extent filtered (or otherwise constrained) GRACE solutions are reasonably

justified by the original L1B data (which is the very data used to create the unconstrained

solutions). It is worth mentioning that such an inspection of data fitting with respect to

an adjustable degree of constraining has its recognized place in formal inversion theory

(e.g. Parker, 1994); in particular, when searching for the ’optimal’ degree of smoothing.

In order to save computation time, we have performed the test for GRACE orbit fits and

observation residuals with decorrelated gravity models only for a single month, August

2003. Orbit determination was performed in all cases along the same (RL04) standards.

As usual, KRR data are introduced with a sigma of 0.25 µm/s (in the final step), GPS

phase observations with a sigma of 0.85 cm and GPS code observations with a sigma of

35 cm (we use zero-differences of the ionosphere-free L3 combination for the GPS observ-

ables). In all cases, the decorrelated gravity models were introduced in the last step of

the iteration and kept fixed (i.e. not adjusted any more).

Results from the POD phase are provided in table 5, where the numbers in brackets indi-

cate the number of data points which passed our automatic (3sigma-) editing procedure.

Somewhat unexpected, we find that the variation of the data fit RMS is in general very

small, meaning that all considered fields fit the original data within close limits and none of

them can be ’excluded’ as unrealistic based on data misfit. With other words, the GRACE
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L1B data permits – within some range – all solutions as realistic, which can qualitatively

be explained through the ill-posedness of the problem. In addition to this, empirical or-

bit parameters are co-estimated for a best-possible POD that may absorb some gravity

model differences. A closer inspection suggests that moderate decorrelation/smoothing

(DDK3) slightly increases the number of accepted observations for the GPS data types.

Similar results are found for KRR data residuals, cf. table 6. Decorrelation/smoothing

appears to improve the fit RMS for KRR and GPS phase measurements slightly, but we

believe the data fits are inconclusive here. It is possible that empirical KRR parameters

(at the 1/rev frequency) absorb gravity model differences and thus tend to equalize the

residual statistics. A deeper investigation is needed here, but we feel this is beyond the

scope of this paper. When interpreting tables 5 and 6, one should also bear in mind that

the number of accepted data does differ between solutions due to automatic editing (but

much less than 1%), and that the shown RMS are not weighted. On the other hand, the

original solution – including ’stripes’ – fits as well as the decorrelated solutions. Hence,

we can confirm that the ’striping’ does not simply represent a geographical mapping of

the data errors. It is more likely that small errors (most probably temporal aliasing from

unmodelled short-period effects), cause small oscillations of the solutions, which are then

amplified due to downward continuation.

3.2. Stability of basin specific periodic components

One of the most important GRACE applications is the determination of basin-specific

mass change on smaller spatial scales, aiming at the validation and, eventually, calibration

of hydrological modelling. In order to understand the potential influence of the postpro-

D R A F T February 7, 2009, 9:45pm D R A F T



KUSCHE ET AL.: DECORRELATED GRACE SOLUTIONS BY GFZ X - 17

cessing procedures, the stability of periodic components detected in GRACE monthly

solutions subjected to the different decorrelation filters (DDK1, DDK2, DDK3), was an-

alyzed using the methodology described in Schmidt et al. (2008a).

As a preparatory step, the time series of the decorrelated GRACE solutions is transformed

into space domain and converted into surface mass anomaly. To this set of monthly grids,

Empirical Orthogonal Functions (EOF) analysis is applied, both to the data over all con-

tinents and to a number of selected water catchements. It should be noted that few modes

explain the major part of the variability of the GRACE data (including signal and noise);

e.g. in the Amazon basin the very first mode contains 77% (DDK1), 70% (DDK2), resp.

64% (DDK3), the first two 97% (DDK1), 94% (DDK2), resp. 88% (DDK3) of the total

variability as derived from the GRACE RL04 models. The respective percentages for the

Ganges basin are 94% (DDK1), 87% (DDK2), and 75% (DDK3) for the first mode, resp.

99% (DDK1), 96% (DDK2), and 88% (DDK3) for the sum of the first two. Comparing the

principal components derived from different decorrelated models, we notice that leading

modes vary only little (e.g. for DDK1 versus DDK3 the principle components of the first

three modes of the Amazon are correlated by 1.00, 0.99, and 0.89. For Ganges, we find

0.99, 0.90, and 0.71.) With increasing mode number this difference becomes larger. Less

smoothing causes higher modes to retain a larger amount of unsmoothed noise.

In a subsequent step, the principal components curves are subjected to a specific form

of frequency analysis, which allows for finding arbitrary periods contained in data (cf.

Petrovic et al. 2007, Schmidt et al. 2008a). The periods found in different principal

components can then be sorted according to the part of variability of the original data
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explained by them. In table 7 this is illustrated for some strong periods found in the

basins of Amazon and Ganges. Using a Monte Carlo technique, in Schmidt et al. (2008a)

we have shown that the formal (propagated) accuracy of the leading-mode phases and

periods from GRACE can be as good as one day (i.e. σϕ ∼ 1 day, σT ∼ 1 day) and

better, whereas several (but not all) non-annual modes found in the data are much less

well-determined.

In spite of the varying degrees of signal attenuation, resulting from the three applied

decorrelation filters (compare Table 8 in ESM), the determination of periods and phases

appears as very stable. Table 7 reveals that the majority of the period differences lies in

a subday range, with only two exceptions. Regarding the longer periodic 2.1 year (763-

772 days) wave found in Amazon, it should be taken into account that the determination

of longer periodic variations from a time series with a time span of a few years only

and monthly resolution must be less accurate (Schmidt et al., 2008a). The difference of

3.6 days for the 358 days cycle in Ganges can also be regarded as acceptable in view of

monthly resolution of the data. The phase differences are somewhat larger, but still in

the range of few days.

With respect to the determination of amplitudes, the well-known attenuation phenomena

can be observed in Table 7. However, it should be noted that a ’stronger’ filter does

not attenuate the amplitudes of the dominant periodic terms as much as it attenuates

the total signal. This is illustrated in table 8 (ESM) by the ratios of these amplitudes

and the ratios of WRMS (area weighted root mean square), resulting from application of

the filters DDK1-3. The dominant periodic terms describe the major part of the signal
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variability. These terms cover in most basins more than 2/3 of the total signal content.

Hence, the coherent basin-wide (leading periodic) signals are significantly less attenuated

by a decorrelating filter compared to maps of the total (noise-contaminated) signal.

The results of this section point to the stable behavior of the considered decorrelation

filters with respect to the characteristic features of temporal variability.

4. Comparisons in terms of global hydrology

As noted before, the major part of the variability contained in GRACE monthly fields

over continents can be ascribed to water stock variations. Schmidt et al. (2008a, 2008b)

provide a near complete survey of this type of research and the state of the art in hydrolog-

ical applications of GRACE. Hydrological models have been the main source of validation

for GRACE applications to hydrology. Therefore, for the filters discussed here we need

to understand how filtered data sets behave with respect to these models. Specifically,

we investigate how robust comparisons of GRACE with modelled hydrological variations

are with respect to the applied smoothing parameter. To this end, WGHM surface mass

anomaly maps over all continents (cf. section 2.3, all grid cells where WGHM has values)

were smoothed using the same filters DDK as applied to GRACE.

First, the smoothed GRACE fields were evaluated by pointwise and global (over all con-

tinents) comparison against the smoothed hydrological model WGHM. Land maps of the

surface mass WRMS from GRACE and from WGHM, and of the correlation coefficient

between these two are shown in figures 2, 3, and 4 for decreasing smoothing. ’Stripes’

in GRACE are only visible for DDK3 filtering, whereas DDK1 and DDK2 filters remove
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them efficiently (cf. table 1 for corresponding Gaussian smoothing radius). From visual

inspection, filtering affects WGHM much less than GRACE, with the exception of smaller

regions with peak variablity. Weaker smoothing (DDK3) obviously leaves an unrealisti-

cally strong variability in GRACE.

Table 9 (ESM) provides a summary of the resulting global WRMS values and correlations.

The last column displays correlations between GRACE and WGHM, which are relatively

high. It is also visible that the correlation increases when the smoothing becomes stronger.

From the WRMS values it follows that the signal variabilities contained in GRACE are

stronger then those in WGHM, a fact noted by several researchers before (e.g. Tapley

et al., 2004a, Schmidt et al., 2006, Güntner, 2008). However, from the ratios of WRMS

values (table 9 in ESM) it appears that the attenuation factor for GRACE signals due

to decorrelation rises more quickly with the increased smoothing than for WGHM signals

(the WRMS ratio of 1.64 for DDK3 goes down to 1.47 for the stronger filter DDK1). This

suggests that the filters damp striations more effectively than real signal.

Computing peak values of pointwise WRMS (per grid cell) yields the results displayed in

Table 10 (ESM). The results in the last column are in contrast to those in Table 9 (ESM)

discussed above. The attenuation of maxima for WGHM signals rises more quickly with

the increased smoothing than for GRACE signals (the WRMS ratio of 1.12 for DDK3

goes up to 1.39 for the stronger filter DDK1. This indicates that some large-scale phe-

nomena are missing in WGHM (or overestimated in GRACE) that are less affected by

the filters. Visual inspections indeed confirms that the smoothed WGHM fields contain

more variability at smaller spatial scales.
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In addition, we provide a compilation of WRMS values from evaluating filtered GRACE

solutions over regions, where we expect either large or almost negligible water mass change

(table 11). We apply Gaussian filtering for comparison as well. For the Sahara, signals are

indeed low (cf. also Fig. 2-4) and may be interpreted as a ’noise floor’ for the particular

solution. For the total ocean average, where the WRMS must be interpreted as the sum of

the GRACE measurement error and the residual of the true ocean bottom pressure with

respect to an a priori model removed in the GRACE de-aliasing processing, variability is

somewhat larger compared to the Sahara. Amazon WRMS versus Sahara WRMS may

thus well be understood as a signal/noise ratio, and it is distinctively larger for the DDK1

and DDK2 filters as compared to all Gaussian filters. It is obvious, but not surprising,

that anisotropic filtering performs better in retaining large signals while suppressing what

is believed to be noise.

5. Summary

We have analyzed recent GRACE GFZ RL04 monthly gravity solutions, using a new

decorrelating post-processing approach. We find a very good agreement with mass anoma-

lies derived from a global hydrological model (WGHM). The post-processed GRACE so-

lutions exhibit relatively weak amplitude damping and almost negligeable phase shift and

period distortion for relevant hydrological basins.

Furthermore, these post-processed GRACE solutions have been inspected in terms of data

fit with respect to the original inter-satellite ranging and GPS observations. We find vari-

ations of the data fit owing to solution post-processing only within very narrow and nearly

insignificant limits, confirming the suspicion that GRACE data does not ’pinpoint’ the
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standard unconstrained solutions too firmly.

Regarding our decorrelation and smoothing method, a simplified yet sufficiently accurate

approach has been developed, which allows one to realize and use a higher resolution – as

necessary for generating computed observations – and needs far less extra coefficients to

be stored.
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Güntner A. (2008), Improvement of global hydrological models using GRACE data, Sur-

veys in Geophysics, doi:10.1007/s10712-008-9038-y

Gunter B., Ries J., Bettadpur S., Tapley B., (2006), A simulation study of the er-

rors of omission and commission for GRACE RL01 gravity fields, Journal of Geodesy,

doi:10.1007/s00190-006-0083-3

Han S.-C., Simons F., (2008), Spatiospectral localization of global geopotential fields

from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic

gravity change owing to the 2004 Sumatra-Andaman earthquake, Journal of Geophysical

Reaseach – Solid Earth, 113, B01405, doi:10.1029/2007JB004927

Klees R., Revtova E., Gunter B., Ditmar P., Oudman E., Winsemius H., Savenije H.

(2008), The design of an optimal filter for monthly GRACE gravity models, Geophys.

J. Int., doi:10.1011/j.1365-246X.2008.03922.x

Kusche J. (2007), Approximate decorrelation and non-isotropic smoothing of time-variable

GRACE-type gravity field models, J. Geod. 81:733-749, doi:10.1007/s00190-007-0143-3

D R A F T February 7, 2009, 9:45pm D R A F T



X - 24 KUSCHE ET AL.: DECORRELATED GRACE SOLUTIONS BY GFZ

Parker R. L. (1994), Geophysical Inverse Theory, Princeton University Press, New Jersey
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Corresponding Gaussian radius (km) parameter a and p

decorrelation filter acc. to Kusche (2007, tables 1+2) acc. to ωl = 1

2
acc. to Kusche (2007)

DDK1 1350 530 a = 1 · 1014, p = 4

DDK2 900 340 a = 1 · 1013, p = 4

DDK3 660 240 a = 1 · 1012, p = 4

Table 1. Smoothing characteristics of the three decorrelation filters used in this study.

The parameter a is a weighting factor. By p we denote the exponential parameter in a

power law of the type l−p, fitted to the empirical signal degree variance (for details, cf.

Kusche 2007, Eq. (47) and (48)).
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decorr. max. min. max. min. max. min.

filter off-b.d. off-b.d. mixed-parity mixed-parity mixed-trig. mixed-trig.

entry entry entry entry entry entry

DDK1 0.010 −0.012 0.020 −0.017 0.003 −0.005

w18;18;0
3;3;1 w11;11;1

4;4;0 w24;2;0
23;2;0 w34;3;1

3;3;1 w17;15;0
15;15;1 w17;15;1

17;15;0

DDK2 0.009 −0.011 0.027 −0.013 0.002 −0.007

w21;21;0
6;6;1 w19;18;0

13;12;1 w34;3;1
33;3;1 w40;5;0

5;5;0 w19;15;0
15;15;1 w16;15;0

16;15;1

DDK3 0.011 −0.012 0.035 −0.009 0.009 −0.006

w42;36;1
30;25;1 w31;30;1

16;15;0 w44;45;1
44;4;1 w46;9;1

9;9;1 w2;0;1
70;0;0 w39;15;1

39;15;0

Table 2. (ESM) Maximum deviations for the three filters from the properties of Eq.

(6) and Eq. (7), lmax=70. ’Off-b.d.’ refers to Eq. (6), third line. ’Mixed-parity’ refers to

Eq. (6), fourth and fifth line. ’Mixed-trig.’ refers to Eq. (6), first line, for m = m′.

compression w.r.t.

decorrelation filter full mat. b.-d. mat.

ε = 0.01 ε = 0.001 ε = 0.01 ε = 0.001

DDK1 0.00017 0.00045 0.07 0.19

DDK2 0.00031 0.00079 0.13 0.33

DDK3 0.00052 0.0012 0.22 0.51

Table 3. (ESM) Compression factors for the three filters with thresholding, with

respect to full or block-diagonal representation, lmax=70
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decorrelation filter Entry max. diff. rel. diff. % Full b.-d.

DDK1 w35;30;1
35;30;1 0.0012 0.4 0.288 0.289

DDK2 w19;18;0
19;18;0 0.0007 0.2 0.415 0.416

DDK3 w17;15;1
17;15;1 0.0004 0.2 0.196 0.196

Table 4. (ESM) Maximum differences of block diagonal filter with respect to full

matrix filter, lmax=70

decorrelation filter SLR RMS (cm) GPS code RMS (cm) GPS phase RMS (cm)

DDK1 4.96 (4108) 35.72 (1096407) 0.556 (1096407)

DDK2 4.95 (4108) 35.72 (1096441) 0.554 (1096441)

DDK3 4.94 (4108) 35.75 (1096765) 0.555 (1096765)

no decorrelation 4.95 (4108) 35.74 (1096636) 0.554 (1096636)

Table 5. Data fits (SLR residuals, GPS code and phase residuals) from original and

decorrelated GRACE solutions (L = 120). In brackets () the number of data points after

automatic editing.
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decorrelation filter KRR RMS (µm/s)

DDK1 0.3125 (485698)

DDK2 0.3126 (485741)

DDK3 0.3137 (485935)

no decorrelation 0.3139 (484170)

Table 6. Data fits of Kband range rate residuals from original and decorrelated GRACE

solutions (L = 120). In brackets () the number of data points after automatic editing.
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DDK1 ∆ period ampl. ratio ∆ phase

period ampl. phase DDK2-1 DDK3-1 DDK2
DDK1

DDK3
DDK1 DDK2-1 DDK3-1

mode (days) (-) (days) (days) (days) (-) (-) (days) (days)

Amazon 1 361.9 7.63 114.3 0.1 -0.0 1.09 1.12 1.0 3.0

2 361.5 3.73 201.3 0.3 0.4 1.27 1.35 1.6 3.4

3 772.4 0.50 75.1 -5.0 -9.7 1.64 2.02 -15.3 -5.9

1 459.6 0.90 469.8 0.1 0.6 1.22 1.27 1.7 4.8

Ganges 1 365.2 2.88 264.4 0.1 0.0 1.12 1.16 -0.5 -3.1

1 184.8 0.76 60.3 -0.1 -0.6 1.11 1.09 -2.0 -4.6

2 358.3 0.47 355.8 0.5 3.6 1.85 2.55 -1.9 -1.7

Table 7. Period, amplitude and phase of the most dominant periodic features for

the Amazon and Ganges basins resulting from principal components of GRACE monthly

solutions, as seen by the decorrelation filters; periods and phases in days, amplitudes in

relative units (in our convention, EOF’s have units of mm).
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DDK2/DDK1 DDK3/DDK1

WRMS amplitude WRMS amplitude

Amazon 1.15 1.09 1.23 1.12

Ganges 1.20 1.12 1.36 1.16

Niger 1.23 1.20 1.48 1.32

Volga 1.11 1.01 1.36 0.99

Table 8. (ESM) Comparison of the damping of WRMS and of the amplitude of the

most dominant periodic feature for four large water catchements when applying different

decorrelation filters to GRACE monthly solutions

decorrelation GRACE WRMS WGHM WRMS WRMS ratio correlation

filter (cm) relative (cm) relative GRACE/WGHM GRACE-WGHM

DDK1 5.89 1.00 4.01 1.00 1.47 0.79

DDK2 7.03 1.19 4.72 1.17 1.49 0.74

DDK3 8.58 1.45 5.23 1.30 1.64 0.62

Table 9. (ESM) Comparison of decorrelated GRACE fields with filtered WGHM

hydrology model: WRMS in cm and relative units (w.r.t. DDK1), ratios of WRMS-values

and correlations between GRACE and WGHM; computed from 58 monthly solutions

(2002/08-2007/09) using all pixels over all continents
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GRACE WGHM

decorrelation absolute relative absolute relative ratio MAX

filter MIN MAX MAX MIN MAX MAX GRACE
WGHM

DDK1 1.17 20.96 1.00 0.17 15.04 1.00 1.39

DDK2 1.66 26.16 1.25 0.18 21.93 1.46 1.19

DDK3 3.21 32.49 1.54 0.14 28.99 1.92 1.12

Table 10. (ESM) MIN/MAX (in cm) of pixel-wise WRMS for GRACE and

WGHM over all continents, MAX also in relative units (w.r.t. DDK1) and as ratios

GRACE/WGHM

GRACE WRMS

DDK1 DDK2 DDK3 Gauss (530 km) Gauss (340 km) Gauss (240 km)

Global 3.87 4.77 6.46 3.99 7.54 35.77

Continents 5.89 7.03 8.58 5.78 8.97 35.30

Ocean 2.66 3.44 5.33 3.02 6.94 36.25

Amazon 14.34 16.47 17.66 13.32 16.73 41.75

Sahara 1.75 2.56 4.82 2.46 6.56 35.55

Table 11. Pixel-wise WRMS (in cm) for GRACE as seen by the three decorrelation

filters and by Gaussian filters. Evaluated globally, for the total continent and ocean

surface, and for the Amazon and Sahara regions.
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ORDER_02 ORDER_02 ORDER_02

ORDER_10 ORDER_10 ORDER_10

ORDER_20 ORDER_20 ORDER_20

ORDER_30 ORDER_30

-1.000 -0.100 -0.010 -0.001 0.001 0.010 0.100 1.000

ORDER_30

Figure 1. Coefficients w(l, l′, m, a) for m as in the figure headers, decorrelation filters

DDK1 (left), DDK2 (middle), DDK3 (right)(cf. table 1)
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Figure 2. Pixel-wise WRMS of GRACE (a) and WGHM (b), both in mm, and the

pixel-wise correlation of GRACE and WGHM (c), as seen by the decorrelation filter DDK1
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Figure 3. Pixel-wise WRMS of GRACE (a) and WGHM (b), both in mm, and the

pixel-wise correlation of GRACE and WGHM (c), as seen by the decorrelation filter DDK2
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Figure 4. Pixel-wise WRMS of GRACE (a) and WGHM (b), both in mm, and the

pixel-wise correlation of GRACE and WGHM (c), as seen by the decorrelation filter DDK3
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Figure 5. Ratios of pixel-wise WRMS for two decorrelation filters (DDK3/DDK1) for

GRACE (a) and WGHM (b)
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