GRACE

Gravity Recovery and Climate Experiment

JPL Level-2 Processing Standards Document

For Level-2 Product Release 05.1

Michael M. Watkins and Dah-Ning Yuan
Jet Propulsion Laboratory
California Institute of Technology

Prepared by:

Michael M. Watkins, JPL
GRACE Project Scientist and Science Data System Manager

Dah-Ning Yuan, JPL
Senior Engineer

Contact Information:
Jet Propulsion Laboratory
MS 264-871
4800 Oak Grove Drive
Pasadena, CA 91109
Email: michael.watkins@jpl.nasa.gov

GRACE JPL L-2 Proc Standards Doc - RL 05.1

DOCUMENT CHANGE RECORD

Issue	Date	Pages	Change Description
01.0	Nov 26, 2003	All	Initial Version
02.0	Nov 4, 2005	All	Revised to describe new models for product release v. 2, 4 Nov 2005
03.0	Jan 27, 2006	1	Only change to reflect RL02 standards + AODRL01 (PPHA)
04.0	Feb 20, 2007	All	Revised to reflect RL04 changes
05.0	March 17, 2012	All	Revised to reflect RL05 changes
05.1	November 3, 2014	All	Revised to reflect RL05.1 changes

TABLE OF CONTENTS

DOCUMENT CHANGE RECORD 2
TABLE OF CONTENTS 3
I DOCUMENT DESCRIPTION 4
I. 1 PURPOSE OF THE DOCUMENT 4
I. 2 Document Change History 4
II ORBIT DYNAMICS MODELS 5
II. 1 EQUATIONS OF Motion 5
II.1.1 Independent Variable (Time Systems) 5
II.1.2 Coordinate System 6
II. 2 Gravitational Forces 6
II.2.1 Mean Geopotential \& Secular Changes 6
II.2.2 Solid Earth Tides 7
II.2.3 Ocean Tides 8
II.2.4 Air Tides 8
II.2.5 Tabular Atmosphere \& Oceanic Variability 8
II.2.6 Solid Earth Pole Tide 9
II.2.7 Ocean Pole Tide. 9
II.2.8 N-Body Perturbations 9
II.2.9 General Relativistic Perturbations 10
II. 3 Non-Gravitational Forces 10
II. 4 Empirical Forces 10
II. 5 NUMERICAL INTEGRATION 10
III EARTH \& SATELLITE KINEMATICS 12
III. 1 Earth Orientation 12
III.1.1 CIO based transformation for the celestial motion of the CIP (Q) 12
III.1.2 CIO based transformation for Earth rotation (R) 13
III.1.3 Transformation for polar motion (W) 13
III.1.4 Rotation of velocity components 14
III. 2 Station Coordinates 14
III. 3 Satellite Kinematics 15
IV REFERENCES 16

I DOCUMENT DESCRIPTION

I. 1 PURPOSE OF THE DOCUMENT

This document serves as a record of the processing standards, models \& parameters adopted for the generation of the Level-2 gravity field data products by the GRACE Science Data System component at NASA The Jet Propulsion Laboratory of the California Institute of Technology (JPL). This document is issued once for every release of Level-2 data products generated by JPL. The release number refers to the field $R L$ in the generic Level-2 product name (see Product Specification Document or Level-2 User Handbook)

PID-2_YYYYDOY-YYYYDOY_dddd_JPLEM_OOBR_00RL
This document uses in its title the release number $R L$ for the specific product release and $B R$ for a specific branch whose processing standards are described herein.

This document may be used in conjunction with:

1. GRACE Product Specification Document (327-720)
2. GRACE Level-2 User Handbook (327-734)
3. GRACE CSR L-2 Processing Standards Document (327-742)
4. GRACE GFZ L-2 Processing Standards Document (327-743)
5. GRACE AOD1B Product Description Doc (327-750, GR-GFZ-AOD-0001)

I. 2 Document Change History

This document has been previously issued for the Level-2 data product releases as listed in the change log earlier in this document. The principal changes since the previous issue of this document are described in the remainder of this document.

II ORBIT DYNAMICS MODELS

II. 1 EQUATIONS OF MOTION

The equations of motion for both GRACE satellites are identical in mathematical form. In the remainder of this chapter, the equations will be provided for a single Earth orbiting satellite, with the understanding that the same equations apply to both GRACE satellites. Where appropriate, the parameters or conditions unique to each satellite will be specified.

In the inertial frame

$$
\ddot{\vec{r}}=\vec{f}_{g}+\vec{f}_{n g}+\vec{f}_{e m p}
$$

where the subscript " g " denotes gravitational accelerations; "ng" denotes the acceleration due to the non-gravitational or skin forces; and "emp" denotes certain empirically modeled forces designed to overcome deficiencies in the remaining force models.

II.1.1 Independent Variable (Time Systems)

The independent variable in the equations of motion is the TDT (Terrestrial Dynamic Time). The relationship of this abstract, uniform time scale to other time systems is well known. The table below shows the relationship between various time systems and the contexts in which they are used.

System	Relations	Notes	Standards
TAI	Fundamental time system	International Atomic Time	
UTC	$\mathrm{TAI}=\mathrm{UTC}+\mathrm{n} 1$ (Time-tag for saving intermediate products)	n1 are the Leap Seconds	Tabular input
TDT	TDT $=$ TAI +32.184 s	This is the independent variable for integration. Distinction between TDB $\&$ TDT is ignored.	IAG 1976 recommendations
GPS	$\text { GPS }=\mathrm{UTC}+\mathrm{n} 2$ (basis for the timetagging of GRACE Observations)	n2 are Leap Seconds since Jan 6, 1980	Time-tags in sec since 1200 Jan 01, 2000 GPS Time.

II.1.2 Coordinate System

The fundamental reference frame for the mathematical model is the non-rotating, freelyfalling (inertial) reference frame with the origin defined as the center of mass of the Earth. The Inertial and Earth-fixed reference frames, and their relative orientations and associated standards are further described in the chapter III. 1 on Earth Orientation.

II. 2 GRAVITATIONAL FORCES

The gravitational accelerations are the sum of direct planetary perturbations and the geopotential perturbations. The vector of direct planetary perturbations is evaluated using the planetary ephemerides. The geopotential itself is represented in a spherical harmonic series with time-variable coefficients, to a specified maximum degree and order, and accelerations are computed by evaluating the Earth-fixed gradient of the geopotential. The accelerations are then rotated (after summation with the nongravitational accelerations) to inertial frame for the integration of equations of motion. In general,

$$
\overrightarrow{\boldsymbol{f}}_{g}={ }_{3 \times 3} \boldsymbol{M}_{i t r s}^{\text {gcrs }} \overrightarrow{\boldsymbol{f}}_{g}^{e f}
$$

The 3×3 rotation matrix M, which depends on Earth Precession, Nutation \& Polar Motion is described in the chapter on Earth Kinematics.

Contributions to the spherical harmonic coefficients of the geopotential, and the associated implementation \& standards are now compiled. The geopotential at an exterior field point, at time t, is expressed as

$$
U_{s}(r, \varphi, \lambda ; t)=\frac{G M_{e}}{r}+\frac{G M_{e}}{r} \sum_{l=2}^{N_{\text {max }}}\left(\frac{a_{e}}{r}\right)^{l} \sum_{m=0}^{l} \bar{P}_{l m}(\sin \varphi)\left[\bar{C}_{l m}(t) \cos m \lambda+\bar{S}_{l m}(t) \sin m \lambda\right]
$$

where r is the geocentric radius, and (φ, λ) are geographic latitude and longitude, respectively, of the field point.

The model used for propagation of the equations of motion of the satellites is called the Background Gravity Model. This concept, and its relation to GRACE estimates, is described further in the Level-2 User Handbook. The details of the background gravity model are provided here.

Hereafter, the IERS Conventions (2010) is abbreviated as IERS-2010.

II.2.1 Mean Geopotential \& Secular Changes

GRACE JPL L-2 Proc Standards Doc - RL 05.1
GRACE 327-744 (v 5.1)
November 3, 2014
Page 7 of 14

Parameter	Value	Remarks
$G M_{e}$	$3.986004415 \mathrm{E}+14 \mathrm{~m}^{3} / \mathrm{s}^{2}$	IERS-2010 Standards
a_{e}	6378136.3 m	
$N_{\max }$	Complete to degree/order 180	GIF48 is background model
Note 1: The normalization conventions are as defined in IERS-2010, Eqs 6.2-6.3.		

Note 1: The normalization conventions are as defined in IERS-2010, Eqs 6.2-6.3.
Note 2: The implementation of computation of spherical harmonics \& its derivatives is as described in (Lundberg \& Schutz, 1988).
Note 3: Note that the degree 1 terms are identically zero when the origin of the coordinate system is the center of mass of the Earth
Note 4: The mean field GIF48 is an interim mean gravity field model created from a combination of the 66-month time-series of UTCSR Release-04 products spanning from 2003 through 2011. The GRACE data were combined with harmonic coefficients extracted from the DTU10 gravity anomaly dataset, as described in Ries et al. (2011). The model coefficients are available from GRACE data archives, ICGEM, and from ftp://ftp.csr.utexas.edu/pub/grace/GIF48/.

II.2.2 Solid Earth Tides

Solid Earth tidal contribution to the geopotential are computed approximately as specified in Chapter 6.2, IERS Conventions 2010. Corrections to specific spherical harmonic coefficients are computed and added to the mean field coefficients.

Model	Notes	
Planetary Ephmerides	DE-421	Degree 2 \& 3-expression in Eq. 6.6, IERS-2010
Frequency Independent Terms	Constants from Table 6.3 Illipticity contributions from Degree 2 tides to Degree 4 terms in Eq. 6.7, IERS-2010 are used.	
	Love Numbers for elastic Earth	Constants from Table 6.3 IERS-2010 are used.
	Love Numbers for anelastic Earth	Second degrees
	Tidal corrections to second degrees in Eq. 6.8a and 6.8b, IERS-2010	Constants from Table 6.5a, 6.5 b, and 6.5c, IERS-2010 are used.
	Anelasticity Contributions	(2,0) and (2,1)
Permanent Tide in \bar{C}_{20}	$4.173 \mathrm{E}-9$	Removed from these contributions (is implicitly included in value of C20)

II.2.3 Ocean Tides

The ocean tidal contributions to the geoptoential are computed as specified in JPL Interoffice Memorandum "Convolution Formulism for the Ocean Tide Potential" by S. Desai, 4 March 2005. Corrections to specific spherical harmonic coefficients of arbitrary (selectable) degree and order are computed and added to the mean field coefficients.

Model	Description	Notes
Tidal Arguments, Amplitudes \& Phases	Doodson(1921), Cartwright \& Tayler (1971)	
Convolution Weights	Diurnal, semi-diurnal band from GOT4.7 (Ray 2012 pers. Comm.) Mm and Mf: Egbert \& Ray 2003	Convolution interval = 2 days
	Long-period: Self- consistent equilibrium model (Ray \& Cartwright $1994)$	
Expansion	Complete to degree/order 90	

II.2.4 Air Tides

The S_{2} and S_{1} air tidal contributions to the geoptoential are computed to degree and order 100 using the Ray/Ponte model (Ray and Ponte, 2003). The atmospheric tidal effects on the harmonics are modeled using the ocean tide model.

II.2.5 Tabular Atmosphere \& Oceanic Variability

The non-tidal variability in the atmosphere and oceans is removed through using the AOD1B product. This product is a combination of the ECMWF operational atmospheric model and a barotropic ocean model driven with this atmospheric model. For JPL RL05, we use the AOD1B RL05, based upon ECMWF (as usual) and the baroclinic Dresden OMCT model with mass runoff constrained to zero. The details of this product and its generation are given in the AOD1B Description Document (GRACE 327-750).

This component of the geopotential is ingested as 6 hourly time series to degree and order 100. The value of the harmonics at intermediate epochs is obtained by linear interpolation between the bracketing data points. Prior to its use, geopotential perturbations up to degree and order 100 due to the S1 \& S2 air tide models (Ray and Ponte, 2003) are removed from the AOD1B product.

II.2.6 Solid Earth Pole Tide

The rotation deformation forces are computed as additions to spherical harmonic coefficients, \bar{C}_{21} and \bar{S}_{21}, from anelastic Earth model, as specified in Chapter 6.4, IERS Conventions (2010).

Model	Description	Notes
Anelastic Earth Model Contribution to C21 \& S21	Scaled difference between epoch pole position and mean pole. See Chapter III (Earth Kinematics) for values and cubic variation model for the mean pole.	
Polar Motion	Tabular input	Table 7.7, IERS- 2010
Mean Polar Motion \& Rates	Cubic trend	$\mathrm{K}_{2}=0.3077+$ $i 0.0036$
Constant Parameters	Scale factor $=-1.333 \times 10^{-9} / \operatorname{arcsec}$	
Anelasticity	Included, IERS-2010	

II.2.7 Ocean Pole Tide

The self-consistent equilibrium model of Desai (Desai, 2002) is used to compute ocean pole tide contribution to spherical harmonic coefficients for an anelastic Earth, as specified in Chapter 6.5, IERS Conventions (2010),

Model	Description	Notes
Anelastic Earth Model	Completed to degree /order 30 - expression in Eq. 6.23,	
Contribution to harmonics	IERS-2010	
Polar Motion	Tabular input	Table 7.7, IERS- 2010
Mean Polar Motion \& Rates	Cubic trend	$\gamma=0.6870+$ $i 0.0036$
Constant Parameters	Load Love number to degree 30	
Anelasticity	Included, IERS-2010	

II.2.8 N-Body Perturbations

Unlike the geopotential accelerations, the perturbations due to the Sun, Moon and all the planets are directly computed as accelerations acting on the spacecraft. The direct effects of the objects on the satellite are evaluated using point-mass attraction formulas. The indirect effects due to the acceleration of the Earth by the planets are also modeled as pointmass interactions. However, for the Sun \& the Moon, the indirect effects include the
interaction between a point-mass perturbing object and an oblate Earth - the so-called Indirect J2 effect.

Model	Description	Notes
Third-Body Perturbation	Direct \& Indirect terms of point-mass 3 rd perturbations	
Indirect J2 Effect	Moon only	
Planetary Ephemerides	DE-421	

II.2.9 General Relativistic Perturbations

The general relativistic contributions to the accelerations are computed as specified in Chapter 10 of the IERS2000 Standards.

II. 3 NON-Gravitational Forces

The nominal approach is to use the GRACE accelerometer data to model the nongravitational forces acting on the satellite.

The model used is:

$$
\vec{f}_{n g}=q \otimes\left[\vec{b}+{ }_{3 x 3} \mathrm{E} \overrightarrow{\boldsymbol{f}}_{a c c}+\vec{r}\left(t-t_{0}\right)\right]
$$

where the q/operator represents rotations to inertial frame using the GRACE Attitude Quaternion product; \boldsymbol{b} represents an empirical bias vector; and the 3×3 matrix \boldsymbol{E} contains the scale factors along the diagonal, and no cross-coupling terms in the off-diagonal, that is, the matrix we model is diagonal at present, and \boldsymbol{r} represents an empirical rate vector.

The bias vector, rate vector \& scale matrix operate on the GRACE Accelerometer observation product, and are estimatable parameters. Rates are estimated for the X and Y components starting in 2010 to reflect thermal variations.

II. 4 Empirical Forces

For this product release, no empirical accelerations are modeled or estimated.

II. 5 NUMERICAL INTEGRATION

The DIVA variable step/variable order integrator of Krogh (1973) is implemented.

GRACE JPL L-2 Proc Standards Doc - RL 05.1
GRACE 327-744 (v 5.1)
November 3, 2014
Page 11 of 14

Model	Description	
Dependent Variables 1. Equations of motion (position/velocity for each satellite) 2. State Transition Matrix (position/velocity mapping terms only)		
Formulation	Cowell Formulation	
Order	7	
Step-Size	Variable, nominally 5 second	Varied with 1.E-12 tolerance for state

III EARTH \& SATELLITE KINEMATICS

III. 1 Earth Orientation

Earth Orientation here refers to the model for the orientation of the Earth-fixed reference relative to the Inertial reference. The former are necessary for associating observations, models and observatories to the geographic locations; and the latter for dynamics, integration \& ephemerides.

Frame	System	Realization
Inertial	GCRS	J2000.0 (IERS-2010)
Earth-fixed	ITRS	IGS2008

The rotation between the Inertial and Earth-fixed frames is implemented as:

$$
{ }_{3 \times 3} M_{i r r s}^{\text {crrs }}=\boldsymbol{Q}(t) \boldsymbol{R}(t) W(t)
$$

which converts a vector in the International Terrestrial Reference System (ITRS) to a vector in the Geocentric Celestial Reference System (GCRS). Each component matrix is itself a 3×3 matrix, and is now individually described. This Coordinate transformation consistent with the IAU 2000/2006 resolutions including (1) $\boldsymbol{W}(\boldsymbol{t})$ is the rotation arising from polar motion relating ITRS and Terrestrial Intermediate Reference System (TIRS) using the Celestial Intermediate Pole (CIP) as its z-axis and Terrestrial Intermediate Origin (TIO) as its x-axis; (2) $\boldsymbol{R}(t)$ is the rotation arising from the rotation of the Earth around the axis of the CIP relating TIRS and Celestial Intermediate Reference System (CIRS) using CIP as its z-axis and Celestial Intermediate Origin (CIO) as its x-axis; (3) $\boldsymbol{Q}(t)$ is the rotation arising from the motion of the CIP in the GCRS relating CIRS and GCRS. The CIO based procedures (CIO is the origin adopted on the CIP equator) are described in the following. In the following, R_{1}, R_{2}, R_{3} refer to the elementary 3×3 rotation matrices about the principal directions X, Y and Z , respectively.

III.1.1 CIO based transformation for the celestial motion of the CIP (Q)

The IERS-2010 recommendation complys with the IAU 2000/2006 resolution on adoption of the P03 precession theory (Capitaine et al. 2003) and IAU 2000A nutation theory (Mathews et al. 2002). This transformation relates the ITRS to the GCRS at the date \boldsymbol{t} can be written as:

$$
Q=\boldsymbol{R}_{3}(-E) \boldsymbol{R}_{2}(-d) \boldsymbol{R}_{3}(E+s)
$$

where the time coordinate, \boldsymbol{t}, is Terrestrial Time (TT) since epoch J2000.0 (noon, 01-Jan2000), and \boldsymbol{E} and \boldsymbol{d} are the coordinates of the CIP in the GCRS, and are calculated as

$$
\begin{aligned}
\boldsymbol{X} & =\sin \boldsymbol{d} \cos \boldsymbol{E} \\
\boldsymbol{Y} & =\sin \boldsymbol{d} \sin \boldsymbol{E}
\end{aligned}
$$

Where \boldsymbol{X} and \boldsymbol{Y}, are evaluated using Eq. 5.16 of the $I E R S$-2010. The CIO locator, \boldsymbol{s}, provides the position of the CIO on the equator of the CIP. The calculation of these angles \& their corrections is summarized.

Quantity	Model	Notes
The coordinates of the CIP	Eq. 5.16, Table 5.2a and	IAU2006 Precession and
in the GCRS (X and Y)	5.2 b in IERS-2010	IAU2000A Nutation
Celetial Intermediate Origin locator (\boldsymbol{s})	Table 5.2d in IERS-2010	
Correction for X and Y		Tabular input

III.1.2 CIO based transformation for Earth rotation (R)

This rotation is implemented as

$$
\boldsymbol{R}=\boldsymbol{R}_{3}(-E R A)
$$

where the Earth Rotation Angle (ERA) is calculated as follows:

Quantity	Model	Notes
UT1 variations	Cubic interpolation	Tabular input
	Zonal Tide Regularization	Table 8.1 in IERS-2010
	Ocean tidal variations (Diurnal \& Semi-diurnal)	Table 8.3a and 8.3b in IERS-2010
	Libration Variations (Semi-Diurnal)	Table 5.1b in IERS-2010
Earth Rotation Angle	Eq. 5.15 in IERS-2010	

III.1.3 Transformation for polar motion (W)

The Polar Motion component of rotation is implemented as

$$
W=\boldsymbol{R}_{3}\left(-s^{\prime}\right) \boldsymbol{R}_{2}\left(x_{p}\right) \boldsymbol{R}_{1}\left(y_{p}\right)
$$

Quantity	Model	Notes
Polar coordinates $\left(\boldsymbol{x}_{\boldsymbol{p}} \& \boldsymbol{y}_{\boldsymbol{p}}\right)$	Cubic interpolation	Tabular input
Terrestrial Intermediate Origin locator $\left(\boldsymbol{s}^{\prime}\right)$	Eq. 5.13 in IERS-2010	
Ocean Tidal Regularization		Table 8.4 in IERS-2010
Ocean Tidal Variations (Diurnal/Semi-Diurnal)		Table 8.2a and 8.2b in IERS-2010
Libration Variations (Diurnal)		Table 5.1a in IERS-2010

III.1.4 Rotation of velocity components

The position rotations are specified in Section II.1. The velocity components are rotated using the matrix approximation

$$
\vec{v}_{g c r s}=M_{i t r s}^{g r r s} \vec{v}_{i t r s}+\dot{M}_{i t r s}^{\text {grrs }} \vec{r}_{i t r s}
$$

III. 2 Station Coordinates

This section summarizes the models for the mean and time-variable parts of the station coordinates adopted for data processing. It is important to understand that the JPL L-2 production fixes the GPS ephemerides to the JPL "FLINN" solution, and thus the station coordinates do not appear explicitly in the L-2 solution, but only implicitly in the FLINN solution (Desai et al., 2011).

For the FLINN solution, the following standards are used:

Quantity	Model	Notes
Mean Station Positions	IGS08	Refers to the position of a geodetic marker and reference point for antenna calibrations. IGS realization of ITRF2008
Station Velocities	Individual Station velocities in ITRF2008	See individual observation models and IGS08 antenna calibrations
Station Eccentricities	FES2004 with hardisp.f	Spline interpolation from 11 main tides to 342 constituents
Ocean Tidal Loading	IERS-2010	Luni-Solar ephemerides from DE-421
Luni-Solar Solid Earth Tidal Displacement		

GRACE JPL L-2 Proc Standards Doc - RL 05.1
GRACE 327-744 (v 5.1)
November 3, 2014
Page 15 of 14

Rotational Deformation	IERS-2010	Cubic mean pole model
Ocean Pole Tide Loading	IERS-2010	Desai, 2002
Tidal Geocenter Correction	Included within ocean tidal loading model, IERS-2010	
S_{1} - S_{2} Atmospheric Loading	Not modeled	
Post-glacial Rebound	Not modeled	
Slow (seasonal) Geocenter Variations	Not modeled	

III. 3 SATELLITE KINEMATICS

The inertial orientation of the spacecraft is modeled using tabular input data quaternions. The same data (with appropriate definitions) is used for rotating the accelerometer data to inertial frame prior to numerical integration; for making corrections to the ranging observations due to offset between the satellite center of mass \& the antenna location; as well as for computing the non-gravitational forces (if necessary).

At epochs where the GRACE quaternion product is not available, linear interpolation between adjacent values is used.

IV REFERENCES

Cartwright, D. E. and R. J. Tayler (1971), New Computations of the Tide-generating Potential, Geophys. J. Roy. Astron. Soc., 33, pp. 253-264, 1971.

Capitaine, N., Wallace, P.T., and Chapront, J. (2003), Expressions for IAU2000 precession quantities, Astron. Astrophys., 412(2), pp. 567-586, doi: 10.1051/00046361:20031539.

Cheng, M.K., C.K. Shum and B. Tapley (1997), Determination of long-term changes in Earth's gravity field from satellite ranging obvservations, Jour. Geophys. Res., v 102, B10.

Desai, S. (2002) Observing the pole tide with satellite altimetry, Journal of Geophysical Research, v 107, nr C11, 3186, doi:10.1029/2001JC001224, 2002.

Desai, S. D., W. Bertiger, J. Gross, B. Haines, N. Harvey, C. Selle, A. Sibthorpe, and J. P. Weiss, Results from the Reanalysis of Global GPS Data in the IGS08 Reference Frame, EOS Trans, AGU, 2011.
Doodson, A.T. (1921),The harmonic development of the tide-generating potential, Proc. R. Soc. A., 100, pp. 305-329, 1921.

Egbert, G.D. and Ray, R.D. (2003), Deviation of long-period tides from equilibrium: kinematics and geostrophy, Journal of Physical Oceanography, Vol 33, pp 822-839, April 2003.
(IERS-2010) Petit, G. and B. Luzum, IERS Conventions (2010), IERS Technical Note 36.

Lefevre, F., T. Letellier \& F. Lyard (2005), FES2004 Model (realization FES2004_r190105), 2005.

Lundberg, J. B., and B. E. Schutz (1988), Recursion formulas for Legendre function for use with nonsingular geopotential models, Journal of Guidance, Control and Dynamics, $11,31$.

Mathews, P.M., T. A. Herring and B. Buffet (2002), "Modeling of nutation-precession: New nutation series for nonrigid Earth, and insights into the Earth’s interior," J. Geophys. Res., 107 (B4), 10.1029/2001JB000390.

Ray, R.D. and R.M. Ponte (2003), Barometric tides from ECMWF operational analyses, Annales Geophysicae, 21:1897-1910.
Ray, R. D. and D. E. Cartwright (1994), "Satellite altimeter observations of the Mf and Mm ocean tides, with simultaneous orbit corrections," in Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics, pp. 69-78, American Geophysical Union, Washington.

Ries, J., S. Bettadpur, S. Poole and T. Richter (2011), "Mean background gravity fields for GRACE processing," in GRACE Science Team Meeting Proceedings, Austin TX, August 8-11, 2011.

