
Note on the DDK filters: 
 
In Kusche et al. 2009, only the DDK1 - DDK3 are explicitly listed with the given parameters 
(see Table 1 from Kusche et al. 2009). 
 

 
 

For DDK4 and higher, ICGEM uses the scale factors and powers as indicated below. For more 
explanaLon and experimental DDKs, users can refer to 
hMps://github.com/strawpants/GRACE-filter. 
 

Filter Scale Power 
DDK8 5 x 109 4 
DDK7 1 x 1010 4 
DDK6 5 x 1010 4 
DDK5 1 x 1011 4 
DDK4 5 x 1011 4 
DDK3 1 x 1012 4 
DDK2 1 x 1013 4 
DDK1 1 x 1014 4 

 
 
 
Reference: 
 
Kusche, J., Schmidt, R., Petrovic, S., Rietbroek, R. Decorrelated GRACE Lme-variable gravity 
soluLons by GFZ, and their validaLon using a hydrological model. J Geod 83, 903–913 (2009). 
hMps://doi.org/10.1007/s00190-009-0308-3 
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Table 1 Smoothing characteristics of the three decorrelation filters used in this study

Decorrelation filter Corresponding Gaussian radius (km) Parameter a and p

Acc. to Kusche (2007, tables 1+2) Acc. to ωl = 1
2 Acc. to Kusche (2007)

DDK1 1,350 530 a = 1 × 1014, p = 4

DDK2 900 340 a = 1 × 1013, p = 4

DDK3 660 240 a = 1 × 1012, p = 4

The parameter a is a weighting factor. By p we denote the exponential parameter in a power law of the type l−p , fitted to the empirical signal
degree variance [for details, cf. Kusche 2007, Eqs. (47) and (48)]

resulting kernels would exhibit a more complicated struc-
ture (e.g., more sidelobes, as expected) without providing
any real advantages. The disadvantage of the Kusche (2007)
method lies in the fact that a fully populated filter matrix
is built: every filtered coefficient is computed as a weighted
average of all nK coefficients (cf. Eq. 4). Swenson and Wahr
(2006), on the other hand, derived their method as an order-
convolution filter, i.e., a filtered spherical harmonic coeffi-
cient is constructed using only the coefficients of the same
harmonic order and over the same parity. Why this is effec-
tive is not surprising: from its observing geometry, it is clear
that GRACE (at least for good periods without larger data
gaps) comes close to fulfilling certain sampling conditions
(Colombo 1986), for which the normal matrix would attain
a special, block-diagonal structure.

2.2 Order convolution coefficients

In the Kusche (2007) method, with smoothing parameter a,
each spherical harmonic coefficient (σlmq = cσ

lm for q = 0
and σlmq = sσ

lm for q = 1) of the surface mass anomaly
σ (λ, θ) (or any other functional of gravity change) is decor-
related and smoothed in the following way
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Here l and m are harmonic degree and order, and the surface
mass anomaly coefficients follow from published GRACE
geopotential coefficients xlmq (Wahr et al. 1998)
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δxlmq , (2)

where ρe and ρw are average (reference) densities of Earth
and sea-water, k′

l is the load Love number of degree l, δxlmq =
xlmq − x̄lmq , and x̄lmq is a long-time average of the geopoten-
tial coefficient. lmin and lmax are the minimum and maximum
spherical harmonic degrees (usually lmin = 2 and lmax =
40, . . . , 120). wl ′m′q ′

lmq (a) is the matrix of decorrelation coeffi-
cients, with a continuous non-negative parameter a that con-
trols the degree of smoothness. The reason for using a dense
matrix, i.e., each coefficient σ filt

lmq following from a weighted

mean of all other coefficients, is that the error covariance
matrix E and the signal covariance matrix S will in general
be given as dense matrices. Then, it follows straightforward
from probabilistic inverse principles that

Wa = (E−1 + aS−1)−1E−1

=
(

I + (a − a′)Wa′ES−1
)

Wa′ , (3)

see Kusche (2007). There, it was also shown that this fil-
ter is equivalent to the common (quadratic) constraining of
the GRACE solutions, if E−1 equals the GRACE normal
equations matrix and S−1 equals the regularization matrix.
Gaussian and other commonly used noise suppression meth-
ods employ a diagonal matrix, hence they cannot decorrelate
the coefficients. The downside of the full-matrix approach is
that the number of filter coefficients nK is quite large,

nK =
(
(lmax + 1)2 − l2

min

)2
. (4)

Table 1 provides an overview of the smoothing properties of
the three filter versions (denoted by DDK1, DDK2, DDK3)
that we evaluate in this article, in terms of the smoothing
radius of an approximately equivalent Gaussian filter. How-
ever, there are different possibilities to define a correspon-
dence between an anisotropic filter (which possesses negative
sidelobes in our case) and an isotropic all-positive Gaussian.
We provide two of them: (1) based upon the assessment in
Kusche (2007), which defines the spectral variance of the
squared isotropic and anisotropic function thought as a prob-
ability distribution on the sphere, and (2) based on compar-
ing the ‘isotropic part’ of the anisotropic decorrelation filter
with the Gaussian in terms of matching the particular spectral
degree where the filter weight drops to 0.5, i.e., by defining
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In fact, Gaussian radii based on (1) and (2) differ signifi-
cantly (cf. Table 1). This is not surprising since method (2)
completely disregards the anisotropic structure of the filter
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