|
AIUB-GRL350A
|
2021 |
350 |
GRAIL |
Bertone et al. (2021)
Bertone, S., Arnold, D., Girardin, V., Lasser, M., Meyer, U., Jäggi, A.,
2021:
Assessing Reduced‐Dynamic Parametrizations for GRAIL Orbit Determination and the
Recovery of Independent Lunar Gravity Field Solutions.
Earth and Space Science.
doi: 10.1029/2020EA001454.
|
gfc
zip
|
|
|
AIUB-GRL350B
|
2021 |
350 |
GRAIL |
Bertone et al. (2021)
Bertone, S., Arnold, D., Girardin, V., Lasser, M., Meyer, U., Jäggi, A.,
2021:
Assessing Reduced‐Dynamic Parametrizations for GRAIL Orbit Determination and the
Recovery of Independent Lunar Gravity Field Solutions.
Earth and Space Science.
doi: 10.1029/2020EA001454.
|
gfc
zip
|
|
|
densityMOON
|
2020 |
89 |
|
Sprlak et al. (2020)
Sprlak M, Han S-C, Featherstone W. (2020):
Crustal Density and Global
Gravitational Field Estimation of the Moon from GRAIL and LOLA Satellite Data, Planetary and Space Science, 192, 105032.
doi: https://doi.org/10.1016/j.pss.2020.105032
|
gfc
zip
|
|
|
STU_MoonTopo720
|
2019 |
2160 |
Topography |
Bucha et al. (2019)
Bucha, B., Hirt, C., Kuhn, M., (2019):
Divergence-free spherical harmonic gravity field modelling based on the Runge-Krarup theorem: a case study for the Moon. Journal of Geodesy 93, 489-513, https://doi.org/10.1007/s00190-018-1177-4.
Hirt, C., Kuhn, M., (2017):
Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography - a case study for the Moon. Journal of Geophysical Research: Planets 122, 17271746, https://doi.org/10.1002/2017JE005298.
Wieczorek, M. A., (2015):
Gravity and topography of the terrestrial planets. In: Schubert, G. (ed.) Treatise on geophysics, 2nd edn. Elsevier, New York, pp 153193.
https://doi.org/10.1016/B978-0-444-53802-4.00169-X.
Moritz, H., (1980): Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe, Germany, 500 pp
Web: http://edisk.cvt.stuba.sk/~xbuchab/
|
gfc
zip
|
|
|
STU_MoonTopo720_plusNormalField
|
2019 |
2160 |
Topography |
Bucha et al. (2019)
Bucha, B., Hirt, C., Kuhn, M., (2019):
Divergence-free spherical harmonic gravity field modelling based on the Runge-Krarup theorem: a case study for the Moon. Journal of Geodesy 93, 489-513, https://doi.org/10.1007/s00190-018-1177-4.
Hirt, C., Kuhn, M., (2017):
Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography - a case study for the Moon. Journal of Geophysical Research: Planets 122, 17271746, https://doi.org/10.1002/2017JE005298.
Wieczorek, M. A., (2015):
Gravity and topography of the terrestrial planets. In: Schubert, G. (ed.) Treatise on geophysics, 2nd edn. Elsevier, New York, pp 153193.
https://doi.org/10.1016/B978-0-444-53802-4.00169-X.
Moritz, H., (1980): Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe, Germany, 500 pp
Web: http://edisk.cvt.stuba.sk/~xbuchab/
|
gfc
zip
|
|
|
sphericalRFM_CERES_2519.gfc
|
2019 |
2519 |
Topography |
Sprlak et al. (2020)
Sprlak, M., Han, S-C, Featherstone, W. (2020):
Spheroidal Forward Modelling of the Gravitational Fields of 1 Ceres and the Moon. Icarus 335, doi: https://doi.org/10.1016/j.icarus.2019.113412.
|
gfc
zip
|
|
|
sphericalRFM_MOON_2519.gfc
|
2019 |
2519 |
Topography |
Sprlak et al. (2020)
Sprlak, M., Han, S-C, Featherstone, W. (2020):
Spheroidal Forward Modelling of the Gravitational Fields of 1 Ceres and the Moon. Icarus 335, doi: https://doi.org/10.1016/j.icarus.2019.113412.
|
gfc
zip
|
|
|
sphericalRFM_MOON_2519_plusNormalField.gfc
|
2019 |
2519 |
Topography |
Sprlak et al. (2020)
Sprlak, M., Han, S-C, Featherstone, W. (2020):
Spheroidal Forward Modelling of the Gravitational Fields of 1 Ceres and the Moon. Icarus 335, doi: https://doi.org/10.1016/j.icarus.2019.113412.
|
gfc
zip
|
|
|
GrazLGM420b
|
2018 |
420 |
|
Wirnsberger et al. (2018)
Wirnsberger H., Krauss S., and Mayer-Gürr, T., 2018
First independent Graz Lunar Gravity Field Model derived from GRAIL.
submitted to Icarus 2018_244.
|
gfc
zip
|
|
|
GrazLGM420b+
|
2018 |
420 |
|
Wirnsberger et al. (2018)
Wirnsberger H., Krauss S., and Mayer-Gürr, T., 2018
First independent Graz Lunar Gravity Field Model derived from GRAIL.
submitted to Icarus 2018_244.
|
gfc
zip
|
|
|
RFM_Moon_2520
|
2018 |
2520 |
|
Sprlak et al. (2018)
Sprlak, M., Han, S-C., Featherstone, W.E. (2018) (2018):
Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (~2 km) gravity fields of the Moon.
Journal of Geodesy, doi: 10.1007/s00190-017-1098-7. |
gfc
zip
|
|
|
GrazLGM420a
|
2017 |
420 |
|
Wirnsberger et al. (2017)
Wirnsberger H., Klinger B., Krauss S., and Mayer-Gürr, T., 2017
First independent lunar gravity field solution in the framework of project GRAZIL.
European Geoscience Union 2017, Vienna.
Krauss, S., Klinger, B., Baur, O., Mayer-Guerr, T. 2015.
Development of the lunar gravity field model GrazLGM300a.
Oesterr. Zeitschr. Verm. Geoinf., ISSN 1605-1653, 103, 156-161, 2015. |
gfc
zip
|
|
|
dV_MoonTopo_2160
|
2017 |
2160 |
|
Hirt and Kuhn (2017)
Hirt, C. and M. Kuhn, 2017:
Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography a case study for the Moon.
Journal of Geophysical Research (JGR) - Planets, 122, doi:10.1002/2017JE005298. |
gfc
zip
|
|
|
GrazLGM300c
|
2016 |
300 |
|
Krauss et al. (2016)
Krauss, S., Wirnsberger, H., Klinger, B., Mayer-Guerr, T., Baur, O.;
Latest developments in lunar gravity field recovery within the project GRAZIL
European Geoscience Union 2016, Vienna, 2016
Related References:
Krauss, S., Klinger, B., Baur, O., Mayer-Guerr, T.;
Development of the lunar gravity field model GrazLGM300a
Oesterr. Zeitschr. Verm. Geoinf., ISSN 1605-1653, 103, 156-161, 2015 |
gfc
zip
|
|
|
AIUB-GRL200A
|
2015 |
200 |
|
Arnold et al. (2015)
Arnold D., Bertone S., Jäggi A., Beutler G., Mervart L.;
GRAIL gravity field determination using the Celestial Mechanics Approach
http://dx.doi.org/10.1016/j.icarus.2015.08.015, Icarus, 2015 |
gfc
zip
|
|
|
AIUB-GRL200B
|
2015 |
200 |
|
Arnold et al. (2015)
Arnold D., Bertone S., Jäggi A., Beutler G., Mervart L.;
GRAIL gravity field determination using the Celestial Mechanics Approach;
http://dx.doi.org/10.1016/j.icarus.2015.08.015, Icarus, 2015 |
gfc
zip
|
|
|
GL0660B
|
2013 |
660 |
|
|
gfc
zip
|
|
|
GRGM660PRIM
|
2013 |
660 |
|
|
gfc
zip
|
|
|
ggm1025a
|
2002 |
80 |
|
Lemoine et al. 2001
F.G. Lemoine, G.A. Neumann, D.S. Chinn, D.E. Smith, M.T. Zuber, D.D. Rowlands, D.P. Rubincam, and D.E. Pavlis;
Solution for Mars Geophysical Parameters from Mars Global Surveyor Tracking Data
American Geophysical Union Fall Meeting 2001 (EOS, Trans. AGU 82(47), Fall Meeting Supplement, Abstract P42A-0545, F721, 2001)
Lemoine et al.;
An Improved Solution of the Gravity Field of Mars (GMM-2B) from Mars Global Surveyor;
J. Geophys Res., 106(E10), 23359-23376, Oct 25, 2001 |
gfc
zip
|
|
|
jgm85f01
|
2002 |
85 |
|
|
gfc
zip
|
|
|
JGL150Q1
|
2000 |
150 |
|
|
gfc
zip
|
|
|
JGL165P1
|
2000 |
165 |
|
|
gfc
zip
|
|
|
ggm2bc80
|
2000 |
80 |
|
|
gfc
zip
|
|
|
JGL100J1
|
1999 |
100 |
|
|
gfc
zip
|
|
|
JGL100K1
|
1999 |
100 |
|
|
gfc
zip
|
|
|
JGL075D1
|
1998 |
75 |
|
|
gfc
zip
|
|
|
JGL075G1
|
1998 |
75 |
|
|
gfc
zip
|
|
|
ggm50a01
|
1998 |
50 |
|
|
gfc
zip
|
|
|
ggm50a02
|
1998 |
50 |
|
|
gfc
zip
|
|
|
jgm50c01
|
1998 |
50 |
|
|
gfc
zip
|
|
|
shgj180ua01
|
1997 |
180 |
|
|
gfc
zip
|
|
|
shgj120pa01
|
1996 |
120 |
|
|
gfc
zip
|
|
|
GLGM-2
|
1995 |
70 |
|
Lemoine et al. (1995)
F. G. Lemoine, D. E. Smith, M.T. Zuber, G. A. Neumann, D. D. Rowlands;
GLGM-2, A 70th Degree and Order Lunar Gravity Model from Clementine and Historical Data
J. Geophys. Res, November 1995
Related References
F. G. Lemoine, D. E. Smith, M. T. Zuber, and G. A. Neumann;
High Degree and Order Spherical Harmonic MOdels for the Moon from Clementine and Historic S-Band Doppler Data
1995 XXI General Assembly, IUGG, Boulder, Colorado, July 12, 1995
M E Davies, V K Abalakin, A. Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, Y S Tjuflin;
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites 1991
Cel. Mechanics and Dynamical Astronomy, 53, 377-397, 1992 |
gfc
zip
|
|
|
GLGM-1
|
1994 |
70 |
|
Lemoine et al. (1994)
F. G. Lemoine, D. E. Smith, M. T. Zuber;
Goddard Lunar Gravity Model-1 (GLGM-1): A 70th degree and order gravity model for the Moon;
P11A-9, EOS, Transactions of the American Geophysical Union Volume 75, No. 44, 1994
Related References:
M E Davies, V K Abalakin, A. Brahic, M. Bursa, B H Chovitz, J H Lieske, P K Seidelmann, A T Sinclair, Y S Tjuflin;
Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites 1991
Cel. Mechanics and Dynamical Astronomy, 53, 377-397, 1992 |
gfc
zip
|
|